Chemistry 12 **REACTION MECHANISMS**

1. It is known that compounds called *chlorofluorocarbons* (C.F.C.s) (eg. CFCl₃) will break up in the presence of ultraviolet radiation, such as found in the upper atmosphere, forming single chlorine atoms:

The Cl atoms then react with Ozone (O₃) as outlined in the following mechanism.

Step 1:
$$Cl + o_3 \rightarrow Clo + o_2$$

 $ClO + O \rightarrow Cl + O_2$ (single "O" atoms occur naturally in the Step 2: atmosphere.)

a) Write the equation for the *overall reaction*. (Using steps 1 and 2)

$$03 + 0 \rightarrow 20_2$$

b) What is the *catalyst* in this reaction?

ozone.

- c) Identify an *intermediate* in this reaction
- d) Explain how a *small* amount of chlorofluorocarbons can destroy a *large* amount of

e) What breaks the bond in the CFCl3 and releases the free Cl atom?

2. Given the following mechanism, answer the questions below:

Step 1:
$$O_3 + NO \rightarrow NO_2 + O_2$$
 (slow)

Step 2:
$$NO_2 + O \rightarrow NO + O_2$$
 (fast)

a) Give the equation for the overall reaction.

b) What could the *catalyst* be in this mechanism?

c) What is an *intermediate* in this mechanism?

d) Given that the **uncatalyzed** overall reaction is a *slow exothermic* reaction, draw a *potential energy graph* which shows the possible shape of the curve for the *uncatalyzed* reaction. On the same graph, show a possible curve for the *catalyzed* reaction.

3. Consider the following mechanism:

Step 1:
$$H_2O_2 + I \rightarrow H_2O + IO - (slow)$$

Step 2:
$$H_2O_2 + IO \rightarrow H_2O + O_2 + I$$
 (fast)

a) Give the equation for the overall reaction.

$$2H2O_2 \rightarrow 2H2O + O_2$$

- b) What acts as a catalyst in this mechanism?
- c) What acts as an *intermediate* in this mechanism?
- 4. What is meant by the *rate determining step* in a reaction mechanism?

5. What is meant by a reaction mechanism? Series of steps

forward reaction?

reverse reaction?

6. Given the following *Potential Energy Diagram* for a 3 step reaction, answer the questions below it:

PROGRESS OF REACTION

a) Which arrow indicates the activation energy for the first step of the reverse reaction?

b) Which arrow indicates the activation energy for the first step of the forward reaction?

2

c) Which arrow indicates the activation energy for the second step of the forward reaction?

d) Which arrow indicates the enthalpy change (ΔH) or "enthalpy change" for the overall

6

e) Which arrow indicates the *enthalpy change* (ΔH) *or "enthalpy change"* for the *overall*

6

f) Which arrow indicates the activation energy for the overall forward reaction?

en2

g) Which step would be the *rate determining step* in the *forward* reaction?

h) In a dashed line or another colour sketch a possible curve that would represent the route for the *uncatalyzed overall reaction*. <u>Label this</u> on the graph.

7. Given the reaction:

$$4HBr + O_2 \rightarrow 2H_2O + 2Br_2$$

a) Would you expect this reaction to take place in a single step?

Why or why not? Unlikely for 5 particles to Simultaneously

b) This reaction is thought to take place by means of the following mechanism:

Step 1:
$$HBr + O_2 \rightarrow HOOBr$$
 (slow)

Step 2:
$$HBr + HOOBr \rightarrow 2HOBr$$
 (fast)

Step 3:
$$2HBr + 2HOBr \rightarrow 2H_2O + 2Br_2$$
 (fast)

- c) Identify the two intermediates HOOBY, HOBY
- d) A catalyst is discovered which increases the rate of *Step 3*. How will this affect the rate of the *overall reaction?*

Explain your answer. * * Must speed up slowest step (RDS) to make a difference

e) A catalyst is discovered which increases the rate of *Step 1*. How will this affect the rate of the *overall reaction*?

Explain your answer. Spled up Slowest Step >

Spled up overall rxn

- f) Which step has the greatest activation energy?
- g) How many "bumps" will the potential energy diagram for the reaction mechanism have?
- h) Which step is called the *rate determining step* in this mechanism?
- i) In order to have successful collisions, the colliding particles must have **both** the proper amount of *energy* and the proper Orientation/Collision

j) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is *exothermic*! Make sure you get the "bumps" the correct relative sizes.

Potential Potential

Progress of Reaction

8. The equation for an *overall* reaction is:

I⁻ + OCl⁻ → IO⁻ + Cl⁻

a) The following is a proposed *mechanism* for this reaction. One of the species has been left out. *Determine what that species is and write it in the box.* Make sure the *charge* is correct if it has one!

Step 1: $OCl^- + H_2O \rightarrow HOCl + OH^-$ (fast)

Step 2: $I^- + HOCl \rightarrow IOH + Cl^-$ (slow)

Step 3: $IOH + OH \rightarrow IO + (H_{2}O)$ (fast)

- b) Which species in the mechanism above acts as a *catalyst*? H2O
- c) Which three species in the mechanism above are *intermediates*? <u>HOCI</u>, <u>TOH</u>, <u>OH</u>
- d) Step _____ is the *rate determining step*.

e) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is *endothermic*! Make sure you get the "bumps" the correct relative sizes.

9. Given the following steps for a mechanism:

Step 1:
$$Br_2 \rightarrow 2Br$$
 (fast)

Step 2: $Br + OCl_2 \rightarrow BrOCl + Cl$ (slow)

Step 3: $Br + Cl \rightarrow BrCl$ (fast)

a) Write the equation for the overall reaction.

 $BV_2 + OCI_2 \rightarrow BVOCI + BVCI$

- b) A substance is added that *decreases* the *activation energy* for step 1. Will this speed up, slow down, or have no effect on the rate of the overall reaction? No effect Give a reason for your answer.
- c) Is there a catalyst in this mechanism? ______. If so, what is it?
- d) Is there an *intermediate* in this mechanism? US. If so, what is it? Br\$\delta C|
- e) Which step is the *rate determining step*?

10. The following potential energy diagram refers to a very slow one-step reaction of ozone (O₃) and oxygen atoms in the upper atmosphere.

Progress of Reaction

On the axis below, draw a potential energy diagram which could represent the *catalyzed mechanism* for the reaction:

Step 1:
$$O_3 + NO \rightarrow NO_2 + O_2$$
 (slow)

Step 2:
$$NO_2 + O \rightarrow NO + O_2$$
 (fast)

Progress of Reaction

11. A certain chemical can provide a reaction with an alternate mechanism having a *greater* activation energy. What will happen to the *rate of the reaction* when this chemical is added?

Explain your answer.

