Chemistry 12
 Review - Reaction Kinetics

1. Write expressions with which you could express rates for the following reactions. (Hint: look at what happens to reactants and products.) Recall that solid or liquids can lose or gain mass, gases can lose or gain volume and aqueous solutions can increase or decrease in concentration. ("a" is done as an example.)
a)

$$
\mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{MgCl}_{2(a q)}
$$

reaction rate $=\frac{\text { mass of } \mathrm{Mg} \text { consumed }}{\text { unit time }}$
or
reaction rate $=$ volume of H_{2} produced unit time
or
reaction rate $=\frac{\text { decrease in }[\mathrm{HCl}]}{\text { unit time }}$
or

$$
\text { reaction rate }=\frac{\text { increase in }\left[\mathrm{MgCl}_{2}\right]}{\text { unit time }}
$$

b)

$$
\mathrm{AgNO}_{3(a q)}+\mathrm{NaCl}_{(a q)} \rightarrow \mathrm{NaNO}_{3(a q)}+\mathrm{AgCl}_{(s)}
$$

c)

$$
C_{(s)}+O_{2(g)} \rightarrow C O_{2(\mathrm{~g})}
$$

2. For each of the following reactions find a quantity or property which could be monitored in order to measure the rate of reaction. ("a" is done as an example.)
a)

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

- pressure will decrease as reaction proceeds because you are going from 4 moles of reactants to

2 moles of products. Assuming you have a constant volume, less moles exert less pressure.
b)

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

- Two things could be monitored here. Look at the states of everything carefully.

1 - open system:
2 - closed system:
c)
$2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
brown colourless
Two things could be monitored here.
One is obvious. Look at the states of everything carefully for the other one.
3. A chemist wishes to determine the rate of reaction of beryllium with hydrochloric acid. The equation for the reaction is:

$$
\mathrm{Be}_{(\mathrm{s})}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{BeCl}_{2(a q)}
$$

A piece of beryllium is dropped into 1.00 L of $\mathrm{HCl}_{(\mathrm{aq})}$ and the following data were obtained:

Time	Mass of Beryllium
0 s	0.020 g
4 s	0.018 g
8 s	0.016 g
12 s	0.014 g
16 s	0.012 g
20 s	0.010 g

a) Calculate the Rate of Reaction in grams of Be consumed per second.
b) Calculate the Rate of Reaction in moles of Be consumed per second.
c) What will happen to the $[\mathrm{HCl}]$ as the reaction proceeds? \qquad
4. When pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ is burned in air (oxygen), the products carbon dioxide and water are formed.
a) Write a balanced formula equation for this reaction.
b) If pentane is consumed at an average rate of $2.16 \mathrm{grams} / \mathrm{s}$, determine the rate of consumption of pentane in moles/s.
c) If pentane is consumed at an average rate of $0.030 \mathrm{moles} / \mathrm{s}$, determine the rate of consumption of oxygen in moles/s.
d) If pentane is consumed at an average rate of $0.030 \mathrm{moles} / \mathrm{s}$, determine the rate of production of CO_{2} in moles/s.
e) If pentane is consumed at an average rate of $0.030 \mathrm{moles} / \mathrm{s}$, determine the rate of production of CO_{2} in $\mathbf{g r a m s} / \mathbf{s}$.
5. On the following set of axes, draw the shape of the curve you would expect if you plotted the [HCl] vs. Time, starting immediately after the two reactants are mixed. The equation for the reaction is:

Explain how you got that particular shape. Be detailed.
6. How many possible collisions are there between $3 \mathrm{H}_{2}$ molecules and $3 \mathrm{I}_{2}$ molecules? (a diagram may help)
7. a) In a room filled with H_{2} and O_{2} there are about 10^{32} collisions per second. Explain why the reaction between H_{2} and O_{2} at room temperature is so slow as to be unnoticeable!
b) Suggest $\boldsymbol{t} \boldsymbol{w} \boldsymbol{o}$ ways in which the reaction in question " 7 a " could be speeded $u p$.
1.
2.
8. What might be done to a solid catalyst in order to make it more efficient?
9. a) The following diagram shows a graph of Number of Particles vs. the Kinetic Energy for a sample of molecules colliding:

Number of
Particles

Kinetic Energy
Approximately what fraction of the molecules in the sample have enough energy for an effective collision?
b) On the diagram in question "a", draw the curve you would expect at a higher temperature in which the rate of the reaction is doubled. Be careful to be accurate! Label it.
10. a) When two moles of A react with one mole of B, a reaction occurs in which three moles of C are formed and 34.5 kJ of heat are given off. Write an equation for this reaction showing the heat of reaction $(\Delta \mathrm{H})$ at the right of the equation.
b) Write a thermochemical equation for the reaction in (a) (ie. the Heat Term is right in the equation.)
c) Write a thermochemical equation which shows what happens when 3 moles of C decompose to form two moles of A and 1 mole of B. (See the reaction in " b ")
d) What would happen to the temperature of the surroundings if the reaction mentioned in "a" was carried out? \qquad This type of reaction which releases heat is called \qquad .
e) In the reaction mentioned in question "a" which has more enthalpy, the reactants or the products? \qquad
f) What is meant by enthalpy? \qquad
11. Use the following Potential Energy Diagram to answer all the questions below:

a) What is the value of $\Delta \boldsymbol{H}$ for the forward reaction? \qquad
b) What is the value of the activation energy for the forward reaction? \qquad
c) What is the value of the activation energy for the reverse reaction? \qquad
d) Which is a stronger bond, $\mathrm{A}-\mathrm{A}$ or $\mathrm{A}-\mathrm{B}$? \qquad
e) Explain your answer to (d)
f) Which species is the activated complex?
g) Which set of species has the lowest potential energy? \qquad
h) Is the reaction as written endothermic or exothermic? \qquad
i) What is the minimum energy needed to start the reaction $\boldsymbol{A B}+\boldsymbol{A} \rightarrow \boldsymbol{A}_{2}+\boldsymbol{B}$?
j) What happens to the kinetic energy (speed) of $A B$ and A as the reaction on as shown on the graph proceeds past the activated complex and toward the products?
k) For A_{2} and B to form the activated complex they must have the proper energy and the proper \qquad

1) If a catalyst C is used in this reaction, it takes place by means of a different mechanism. This one involves two steps.

$$
\begin{array}{lll}
\boldsymbol{A}_{2}+\boldsymbol{C} \rightarrow \boldsymbol{A}+\boldsymbol{A} & \text { (slow) } \\
\boldsymbol{A C}+\boldsymbol{B} \rightarrow \boldsymbol{A} \boldsymbol{B}+\boldsymbol{C} & \text { (fast) }
\end{array}
$$

Draw another curve on the graph with another colour showing the catalyzed reaction. (Remember it has two steps so it should have two bumps! Also be aware that one of the bumps is higher than the other!)
$\mathrm{m})$ Which step in question (1) is the rate determining step?
n) Looking at only the equations for the steps in question " l ", how could one tell that " C " is a catalyst?
o) What is $\Delta \mathrm{H}$ for the reverse reaction to what is shown on the graph? \qquad
p) What effect did the catalyst have on the activation energy for the forward reaction?

For the reverse reaction?
q) What effect did the catalyst have on the $\Delta \mathrm{H}$ of the forward reaction?

The reverse reaction?
12. Name four instances in which catalysts are used in industry or everyday life and tell which catalysts are used.
\qquad
\qquad
\qquad
\qquad
13. Describe what happens to the kinetic energy, potential energy and the total energy of reactant molecules as they approach each other.
14. Explain why a lower activation energy for a reaction leads to a greater reaction rate at a given temperature.
 Calculate the rate of reaction @ STP.
a) In mL of H_{2} second
b) In moles of $\mathrm{H}_{2} /$ second
16. Which of the following reactions is most likely to have the greatest rate at room temperature?
a) $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \quad \mathrm{AgI}_{(\mathrm{s})}$
b) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
c) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \quad 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d) $\mathrm{Fe}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \rightarrow \quad \mathrm{FeS}_{(\mathrm{s})}$

Explain how you arrived at your answer. \qquad
17. State whether the following are endothermic or exothermic .
a) $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \quad \Delta \mathrm{H}=-297 \mathrm{~kJ}$
b) $\mathrm{NO}_{2}+33.8 \mathrm{~kJ} \rightarrow 1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$
c) $\mathrm{N}_{2}+\mathrm{O}_{2}+90.4 \mathrm{~kJ} \rightarrow 2 \mathrm{NO}$ \qquad
d) $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}+627.6 \mathrm{~kJ}$
18. Consider the reaction:

$$
\mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{HBr}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CaBr}_{(\mathrm{aq})}+\text { heat }
$$

State whether the following changes would increase the rate or not?:
a) Let the CaBr_{2} solution evaporate without changing the temperature. \qquad
b) Allow the $\mathrm{H}_{2}(\mathrm{~g})$ to escape \qquad
\qquad
c) Decrease the temperature. \qquad
\qquad
d) Increase the temperature. \qquad
\qquad
e) Increase the $[\mathrm{HBr}]$. \qquad
\qquad
19. Consider the rate of the following reaction:

$$
S n_{(s)}+2 H C l_{(a q)} \rightarrow H_{2(g)}+\operatorname{SnCl}_{2(a q)}
$$

a) Is it dependent on temperature? \qquad . Explain your answer.
b) Is it dependent on pressure? \qquad . Explain your answer.
c) Is it dependent on surface area? \qquad . Explain your answer.
20. Consider the following reaction:

$$
2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the rate of reaction in moles of NO consumed per second.
21. Use the following Potential Energy Diagram to answer the questions below:

a) Determine the Activation Energy for the forward reaction... \qquad kJ
b) Determine the Activation Energy for the reverse reaction.... \qquad kJ
c) What is the Enthalpy Change $(\Delta \mathrm{H})$ for the forward reaction?.. \qquad kJ
d) What is the Enthalpy Change ($\Delta \mathrm{H}$) for the reverse reaction?.. \qquad kJ
e) The forward reaction is \qquad thermic.
f) The reverse reaction is \qquad thermic.
g) Which species or set of species forms the Activated Complex?
h) Which bond is stronger, A--B or B--C? \qquad . Give a reason for your answer.
i) Particles from which species or set of species is moving the fastest? \qquad State how you arrived at your answer.
j) Particles from which species or set of species is moving most slowly? \qquad
State how you arrived at your answer. \qquad
k) The compound " AB " is a gas and the element " C " is a solid. What effect would grinding " C " into a fine powder have on the graph shown here?
22. What two requirements must be met before a collision between two reactant particles is effective?

1. \qquad
2. \qquad
3. Describe what happens to two reactant particles which collide with less energy than the Activation Energy.
\qquad
4. Given the following Potential Energy Diagram for a 3 step reaction, answer the questions below

PROGRESS OF REACTION
a) Which arrow indicates the activation energy for the first step of the reverse reaction?
b) Which arrow indicates the activation energy for the first step of the forward reaction?
c) Which arrow indicates the activation energy for the second step of the forward reaction?
d) Which arrow indicates the enthalpy change $(\Delta \mathrm{H})$ or "heat of reaction" for the overall forward reaction?
e) Which arrow indicates the enthalpy change $(\Delta \mathrm{H})$ or "heat of reaction" for the overall reverse reaction?
f) Which arrow indicates the activation energy for the overall forward reaction? \qquad
g) Which step would be the rate determining step in the forward reaction?
25. Given the reaction: $\quad \mathbf{H C O O H} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
a) This reaction, without a catalyst, is very slow at room temperature. Suggest why.
b) This reaction is thought to take place by means of the following mechanism when the catalyst \boldsymbol{H}^{+}is added:

Step 1: $\mathbf{H C O O H}+\boldsymbol{H}^{+} \rightarrow \quad \mathbf{H C O O H}_{2}{ }^{+}$(fast)
Step 2: $\mathbf{H C O O H}_{2}{ }^{+} \rightarrow \quad \mathbf{H}_{2} \mathbf{O}+\mathbf{H C O}^{+}$(slow)
Step 3: $\boldsymbol{H C O}^{+} \quad \rightarrow \quad \boldsymbol{C O}+\boldsymbol{H}^{+}$
c) Identify the two intermediates
d) Identify the catalyst in this mechanism
e) Another catalyst is discovered which increases the rate of only Step 1. How will this affect the rate of the overall reaction? \qquad
Explain your answer.
f) Which step has the greatest activation energy?
g) How many "bumps" will the potential energy diagram for the catalyzed reaction have?
h) Which step is called the rate determining step in this mechanism?
i) In order to have successful collisions, the colliding particles must have both the proper amount of energy and the proper
f) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is exothermic! Make sure you get the "bumps" the correct relative sizes.

Potential
Energy

Progress of Reaction
26. Given the following mechanism, answer the questions below:

Step 1: $\quad \boldsymbol{O}_{3}+\boldsymbol{N O} \rightarrow \boldsymbol{N} \boldsymbol{O}_{2}+\boldsymbol{O}_{2}$ (slow)
Step 2: $\quad \boldsymbol{N} \boldsymbol{O}_{\mathbf{2}}+\boldsymbol{O} \rightarrow \boldsymbol{N O}+\boldsymbol{O}_{\mathbf{2}}$ (fast)
a) Give the equation for the overall reaction.
b) What could the catalyst be in this mechanism?
c) What is an intermediate in this mechanism?
28. The equation for an overall reaction is: $\mathrm{I}^{-}+\mathrm{OCl}^{-} \rightarrow \mathrm{IO}^{-}+\mathrm{Cl}^{-}$
a) The following is a proposed mechanism for this reaction. One of the species has been left out. Determine what that species is and write it in the box. Make sure the charge is correct if it has one!

```
Step 1: OCl}+\mp@subsup{}{}{-}\mp@subsup{\textrm{H}}{2}{}O->H\textrm{HOCl}+\mp@subsup{\textrm{OH}}{}{-}\mathrm{ (fast )
```



```
Step 3: IOH + OH- }\mp@subsup{\textrm{OH}}{}{-}\mp@subsup{\textrm{IO}}{}{-}+\mp@subsup{\textrm{H}}{2}{}O\mathrm{ (fast )
```

b) Which species in the mechanism above acts as a catalyst?
c) Which three species in the mechanism above are intermediates?
d) Step \qquad is the rate determining step.
e) On the set of axes below, draw the shape of the curve you might expect for the reaction in this question. The overall reaction is endothermic! Make sure you get the "bumps" the correct relative sizes.

Potential

Energy

Progress of Reaction

