## Reaction Kinetics

$=$ study of the rate of reactions and the factors which affect the rates

- reaction rate $=$ speed at which a reaction occurs - measures how a property changes per unit time


1. What is the rate of a reaction if 23.5 g of magnesium is used up after 6.0 minutes?

$$
\frac{\Delta \mathrm{aml}^{-1}}{\Delta t}=\frac{\Delta m}{\Delta t}=\frac{23.5 \mathrm{~g}}{6.0 \mathrm{~min}}=3.9 \frac{\mathrm{~g}}{\mathrm{~min}}
$$

2. The rate of a reaction is 0.034 g of Mg per second. Calculate the number of moles of Mg used up in 6.0 minutes.

$$
\begin{aligned}
& \frac{10}{60-m} \\
& =\frac{0.50 \mathrm{~mol}}{6^{\circ} \mathrm{min}}
\end{aligned}
$$

3. An experiment is done to determine the rate of the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AlCl}_{3}(\mathrm{aq})
$$

It is found that the rate of production of $\mathrm{H}_{2}(\mathrm{~g})$ is $0.060 \mathrm{~g} / \mathrm{s}$. Calculate the mass of aluminum Reacted in 3.0 minutes.

Consider the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

The following data is collected:
open beaker
Bant
$\Delta t$
$6.0 \mathrm{~min}\left[\begin{array}{l}\begin{array}{l}\text { Time } \\ (\mathrm{min})\end{array} \\ \begin{array}{l}\text { Mass of Beaker and } \\ \text { Contents (grams) }\end{array} \\ \hline 0.0\end{array}\right.$

1. What is the rate of production of $\mathrm{H}_{2(\mathrm{~g})}$ in $\mathrm{mol} / \mathrm{s}$ ?

$$
\begin{aligned}
\rightarrow \frac{\mathrm{mol}}{\mathrm{~S}}= & =\left[\frac{\Delta \mathrm{m}}{\Delta t}\right]=\left(\frac{1.8 \mathrm{~g}}{6.0 \mathrm{~min}}\right)\left(\frac{\mathrm{mol}}{\partial .0 \mathrm{~g}}\right)\left(\frac{\mathrm{man}}{60 \operatorname{seg}}\right)= \\
= & 0.0025 \frac{\mathrm{~mol}}{\mathrm{~s}} \mathrm{H}_{2} \\
& 2.5 \times 10^{-3} \frac{\mathrm{~mol}}{\mathrm{~s}}
\end{aligned}
$$

2. What is the rate of $\mathrm{Al}_{(\mathrm{s})}$ consumption in $\mathrm{g} / \mathrm{s}$ for

$$
\begin{aligned}
\frac{\underline{g}^{\text {the }}}{\underline{S_{2}}} & =\left(\frac{\left.2.5 \times 10^{-3} \mathrm{~mol}^{2}\right) \mathrm{t}_{2}}{-\underline{S}}\right)\left(\frac{2 \text { molAl }}{3 \text { mol } \mathrm{H}_{2}}\right)\left(\frac{27.0 \mathrm{gJ}}{\mathrm{mel}}\right) \\
& =4.5 \times 10^{-2} \frac{\mathrm{~g}}{\mathrm{~s}}
\end{aligned}
$$

Rates of reaction do not typically remain constant for the entire duration of a reaction.


- initially rates are fast because [reactants] are high
- rates decrease as reaction proceeds since [reactants] decrease
- The exact rate at any particular time can be obtained by determining the slope ff a line that is tangent to the concentration-time curve at that point

