MATH HANDBOOK TRANSPARENCY MASTER

Scientific Notation

Scientists need to express small measurements, such as the mass of the proton at the center of a hydrogen atom (0.000000000000000000000000001673 kg), and large measurements, such as the temperature at the center of the Sun (15000000 K). To do this conveniently, they express the numerical values of small and large measurements in scientific notation, which has two parts.

Thus, the temperature of the Sun, 15 million kelvins, is written as $1.5 \times 10^{7} \mathrm{~K}$ in scientific notation.

Positive Exponents Express 1234.56 in scientific notation.
1234.56

Each time the decimal place is moved one place to the left,

$$
\begin{aligned}
& 1234.56 \times 10^{0}=123.456 \times 10^{1} \\
& 123.456 \times 10^{1}=12.3456 \times 10^{2} \\
& 12.3456 \times 10^{2}=1.23456 \times 10^{3} \\
& 1.23456 \times 10^{3}
\end{aligned}
$$

the exponent is increased by one.

Negative Exponents Express 0.00657 in scientific notation.
0.00657

Each time the decimal place is moved one place to the right, $0.00657 \times 10^{0}=0.0657 \times 10^{-1}$
$0.0657 \times 10^{-1}=0.657 \times 10^{-2}$
$0.657 \times 10^{-2}=6.57 \times 10^{-3}$
6.57×10^{-3}
the
exponent is decreased by one.
\qquad
\qquad

MATH HANDBOOK TRANSPARENCY WORKSHEET

Scientific Notation

Use with Appendix B, Scientific Notation

1. Express each of the following numbers in scientific notation.
a. 230
b. 5601
c. 14100000
d. 56 million
e. $2 / 10$
f. 0.45013
g. 0.089
h. 0.00026
i. 0.000000698
j. 12 thousandth
2. Express each of the following measurements in scientific notation.
a. speed of light in a vacuum, $299792458 \mathrm{~m} / \mathrm{s}$
b. number of seconds in a day, 86400 s
c. mean radius of Earth, 6378 km
d. density of oxygen gas at $0^{\circ} \mathrm{C}$ and pressure of $101 \mathrm{kPa}, 0.00142 \mathrm{~g} / \mathrm{mL}$
e. radius of an argon atom, 0.000000000098 m

Chemistry: Scientific Notation

Part A: Express each of the following in standard form.

1. 5.2×10^{3}
2. 9.65×10^{-4}
3. 8.5×10^{-2}
4. 2.71×10^{4}
5. 3.6×10^{1}
6. 6.452×10^{2}
7. 8.77×10^{-1}
8. 6.4×10^{-3}

Part B: Express each of the following in scientific notation.

1. 78,000
2. 0.00053
3. 250
4. 2,687
5. 16
6. 0.0043
7. 0.875
8. 0.012654

Part C: Use the exponent function on your calculator (EE or EXP) to compute the following.

1. $\left(6.02 \times 10^{23}\right)\left(8.65 \times 10^{4}\right)$
2. $\left(6.02 \times 10^{23}\right)\left(9.63 \times 10^{-2}\right)$
3. $\frac{5.6 \times 10^{-18}}{8.9 \times 10^{8}}$
4. $\left(-4.12 \times 10^{-4}\right)\left(7.33 \times 10^{12}\right)$
5. $\frac{1.0 \times 10^{-14}}{4.2 \times 10^{-6}}$
6. $\frac{7.85 \times 10^{26}}{6.02 \times 10^{23}}$
7. $\left(-3.2 \times 10^{-7}\right)\left(-8.6 \times 10^{-9}\right)$
8. $\frac{\left(5.4 \times 10^{4}\right)\left(2.2 \times 10^{7}\right)}{4.5 \times 10^{5}}$
9. $\frac{\left(6.02 \times 10^{23}\right)\left(-1.42 \times 10^{-15}\right)}{6.54 \times 10^{-6}}$
10. $\frac{\left(6.02 \times 10^{23}\right)\left(-5.11 \times 10^{-27}\right)}{-8.23 \times 10^{5}}$
11. $\frac{\left(3.1 \times 10^{14}\right)\left(4.4 \times 10^{-12}\right)}{-6.6 \times 10^{-14}}$
12. $\frac{\left(8.2 \times 10^{-3}\right)\left(-7.9 \times 10^{7}\right)}{7.3 \times 10^{-16}}$
13. $\frac{\left(-1.6 \times 10^{5}\right)\left(-2.4 \times 10^{15}\right)}{8.9 \times 10^{3}}$
14. $\left(7.0 \times 10^{28}\right)\left(-3.2 \times 10^{-20}\right)\left(-6.4 \times 10^{35}\right)$
