1. Given the equilibrium equation below:

$$
\mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{AB}_{(\mathrm{g})}
$$

If, at equilibrium, the concentrations are as follows:

$$
\left[\mathrm{A}_{2}\right]=3.45 \mathrm{M}, \quad\left[\mathrm{~B}_{2}\right]=5.67 \mathrm{M} \quad \text { and } \quad[\mathrm{AB}]=0.67 \mathrm{M}
$$

a) Write the expression for the equilibrium constant, K_{eq}
b) Find the value of the equilibrium constant, K_{eq} at the temperature that the experiment was done.
2. Given the equilibrium equation:

$$
\mathrm{X}_{2(\mathrm{~g})}+3 \mathrm{Y}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{XY}_{3(\mathrm{~g})}
$$

at a temperature of $50^{\circ} \mathrm{C}$, it is found that when equilibrium is reached that:

$$
\left[\mathrm{X}_{2}\right]=0.37 \mathrm{M}, \quad\left[\mathrm{Y}_{2}\right]=0.53 \mathrm{M} \text { and }\left[\mathrm{XY}_{3}\right]=0.090 \mathrm{M}
$$

a) Write the equilibrium constant expression $\left(\mathrm{K}_{\mathrm{eq}}\right)$
b) Calculate the value of $\mathrm{K}_{\text {eq }}$ at $50^{\circ} \mathrm{C}$.
3. For the reaction: $\quad \mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{C}_{(\mathrm{g})}$
it is found that by adding 1.5 moles of C to a 1.0 L container, an equilibrium is established in which 0.30 moles of B are found. (Hint: Make a table and use it to answer the questions below.)
a) What is [A] at equilibrium?
b) What is [B] at equilibrium?
c) What is [C] at equilibrium?
d) Write the expression for the equilibrium constant, $K_{\text {eq }}$.
e) Calculate the value for the equilibrium constant at the temperature the experiment was done.
4. Considering the following equilibrium:

$$
2 \mathrm{AB}_{3(\mathrm{~g})} \rightleftarrows \mathrm{A}_{2(\mathrm{~g})}+3 \mathrm{~B}_{2(\mathrm{~g})}
$$

If 0.87 moles of AB_{3} are injected into a 5.0 L container at $25^{\circ} \mathrm{C}$, at equilibrium the final $\left[\mathrm{A}_{2}\right]$ is found to be 0.070 M .(Hint: Make a table and use it to answer the questions below.)
a) Calculate the equilibrium concentration of AB_{3}.
b) Calculate the equilibrium $\left[\mathrm{A}_{2}\right]$.
c) Calculate the equilibrium $\left[\mathrm{B}_{2}\right]$.
5. Consider the reaction:

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows \mathrm{C}_{(\mathrm{g})}
$$

a) In an equilibrium mixture the following concentrations were found:
$[\mathrm{A}]=0.45 \mathrm{M},[\mathrm{B}]=0.63 \mathrm{M}$ and $[\mathrm{C}]=0.30 \mathrm{M}$. Calculate the value of the equilibrium constant for this reaction.
b) At the same temperature, another equilibrium mixture is analyzed and it is found that $[B]=0.21 \mathrm{M}$ and $[\mathrm{C}]=0.70 \mathrm{M}$. From this and the information above, calculate the equilibrium [A].
c) In another equilibrium mixture at the same temperature, it is found that $[\mathrm{A}]=0.35 \mathrm{M}$ and the $[C]=0.86 \mathrm{M}$. From this and the information above, calculate the equilibrium [B].

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows \mathrm{C}_{(\mathrm{g})}
$$

6. Two mole of gaseous NH_{3} are introduced into a 1.0 L vessel and allowed to undergo partial decomposition at high temperature according to the reaction:

$$
2 \mathrm{NH}_{3(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

At equilibrium, 1.0 mole of $\mathrm{NH}_{3(\mathrm{~g})}$ remains.
(Make a table and use it to answer the questions below:)
a) What is the equilibrium $\left[\mathrm{N}_{2}\right]$?
b) What is the equilibrium $\left[\mathrm{H}_{2}\right]$?
c) Calculate the value of the equilibrium constant at the temperature of the experiment.
7. At a high temperature, 0.50 mol of HBr was placed in a 1.0 L container and allowed to decompose according to the reaction:

$$
2 \mathrm{HBr}_{(\mathrm{g})} \quad \rightleftarrows \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})}
$$

At equilibrium the $\left[\mathrm{Br}_{2}\right]$ was measured to be 0.13 M . What is K_{eq} for this reaction at this temperature?
8. When 1.0 mol of $\mathrm{NH}_{3(\mathrm{~g})}$ and 0.40 mol of $\mathrm{N}_{2(\mathrm{~g})}$ are placed in a 5.0 L vessel and allowed to reach equilibrium at a certain temperature, it is found that $0.78 \mathrm{~mol}^{\text {of }} \mathrm{NH}_{3}$ is present. The reaction is:

$$
2 \mathrm{NH}_{3(\mathrm{~g})} \quad \rightleftarrows \quad 3 \mathrm{H}_{2(\mathrm{~g})}+\quad \mathrm{N}_{2(\mathrm{~g})}
$$

a) Calculate the equilibrium concentrations of all three species.

$$
\left[\mathrm{NH}_{3}\right]=
$$

\qquad

$$
\left[\mathrm{H}_{2}\right]=
$$

\qquad $\left[\mathrm{N}_{2}\right]=$ \qquad
b) Calculate the value of the equilibrium constant at this temperature.
c) How many moles of H_{2} are present at equilibrium?
d) How many moles of N_{2} are present at equilibrium?
9. When 0.40 mol of PCl_{5} is heated in a 10.0 L container, an equilibrium is established in which 0.25 mol of Cl_{2} is present. (Make a table and answer the questions below. Be sure to read all questions a d before making your table!:)

$$
\mathrm{PCl}_{5(\mathrm{~g})} \rightleftarrows \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a) Calculate the equilibrium concentration of each species.
\qquad $\left[\mathrm{PCl}_{3}\right]=$ \qquad $\left[\mathrm{Cl}_{2}\right]=$ \qquad
b) Calculate the value of the equilibrium constant, K_{eq} at the temperature of the experiment.
c) What amount (moles) of PCl_{3} is present at equilibrium?
d) What amount (moles) of PCl_{5} is present at equilibrium?
10. A mixture of H_{2} and I_{2} is allowed to react at $448^{\circ} \mathrm{C}$. When equilibrium is established, the concentrations of the participants are found to be:
$\left[\mathrm{H}_{2}\right]=0.46 \mathrm{M}, \quad\left[\mathrm{I}_{2}\right]=0.39 \mathrm{M} \quad$ and $\quad[\mathrm{HI}]=3.0 \mathrm{M}$.
The equation is: $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$
a) Calculate the value of $\mathrm{K}_{\text {eq }}$ at $448^{\circ} \mathrm{C}$.
b) In another equilibrium mixture of the same participants at $448^{\circ} \mathrm{C}$, the concentrations of I_{2} and H_{2} are both 0.050 M . What is the equilibrium concentration of HI ?
11. The K_{eq} for the reaction:

$$
\mathrm{PCl}_{5(\mathrm{~g})} \quad \rightleftarrows \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

at $250^{\circ} \mathrm{C}$ is found to be $\mathbf{0 . 0 4 2}$. In an equilibrium mixture of these species, it is found that $\left[\mathrm{PCl}_{5}\right]=0.012 \mathrm{M}$, and $\left[\mathrm{Cl}_{2}\right]=0.049 \mathrm{M}$. What is the equilibrium $\left[\mathrm{PCl}_{3}\right]$ at $250^{\circ} \mathrm{C}$?
12. At a certain temperature the reaction:

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}
$$

has a $\mathrm{Keq}=\mathbf{0 . 5 0 0}$. If a reaction mixture at equilibrium contains 0.210 M CO and $0.100 \mathrm{M} \mathrm{H}_{2}$, what is the equilibrium $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$?
13. At a certain temperature the reaction: $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$ has a $\mathrm{K}_{\mathrm{eq}}=$ 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.
14. The reaction: $\quad 2 \mathrm{XY}_{(\mathrm{g})} \rightleftarrows \mathrm{X}_{2(\mathrm{~g})}+\mathrm{Y}_{2(\mathrm{~g})}$
has a $\mathrm{K}_{\mathrm{eq}}=35$ at $25^{\circ} \mathrm{C}$. If 3.0 moles of XY are injected into a 1.0 L container at $25^{\circ} \mathrm{C}$, find the equilibrium $\left[\mathrm{X}_{2}\right]$ and $\left[\mathrm{Y}_{2}\right]$.
15. The equilibrium constant for the reaction:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})} \quad \text { at } 448^{\circ} \mathrm{C} \text { is } 50 .
$$

a) If 1.0 mol of H_{2} is mixed with 1.0 mol of I_{2} in a 0.50 L container and allowed to react at $448^{\circ} \mathrm{C}$, what is the equilibrium [HI]?
b) How many moles of HI are formed at equilibrium? (Actual yield)
16. Given K_{eq} for the reaction:

$$
\mathrm{PCl}_{5(\mathrm{~g})} \longleftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

is 0.042 at $250^{\circ} \mathrm{C}$, what will happen if 2.50 mol of $\mathrm{PCl}_{5}, 0.600 \mathrm{~mol}$ of Cl_{2} and 0.600 mol of PCl_{3} are placed in a 1.00 flask at $250^{\circ} \mathrm{C}$? (Will the reaction shift left, right, or not occur at all?)
17. Given the equilibrium equation:
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$
at $448^{\circ} \mathrm{C}, \mathrm{K}_{\text {eq }}=50$. If 3.0 mol of $\mathrm{HI}, 2.0 \mathrm{~mol}$ of H_{2}, and 1.5 mol of I_{2} are placed in a 1.0 L container at $448^{\circ} \mathrm{C}$, will a reaction occur?

If so, which way does the reaction shift?
18. Given the equilibrium equation: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$
at $448^{\circ} \mathrm{C}, \mathrm{K}_{\text {eq }}=50$. If 5.0 mol of $\mathrm{HI}, 0.7071 \mathrm{~mol}$ of H_{2}, and 0.7071 mol of I_{2} are placed in a 1.0 L container at $448^{\circ} \mathrm{C}$, will a reaction occur? (Round any answers off to 3 significant digits!)

If so, which way does the reaction shift?
19. Determine the equilibrium constant for the reaction: $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HI}_{(\mathrm{g})}$ given that an equilibrium mixture is analyzed and found to contain the following concentrations: $\left[\mathrm{H}_{2}\right]=0.0075 \mathrm{M},[\mathrm{I} 2]=0.000043 \mathrm{M}$ and $[\mathrm{HI}]=0.0040 \mathrm{M}$
20. Given the equilibrium equation:
$3 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{C}_{(\mathrm{g})}$
If 2.50 moles of A and 0.500 moles of B are added to a 2.00 L container, an equilibrium is established in which the [C] is found to be 0.250 M .
a) Find $[A]$ and $[B]$ at equilibrium.
b) Calculate the value of the equilibrium constant K_{eq}.
21. At $800^{\circ} \mathrm{C}$, the equilibrium constant K_{eq}, for the reaction:

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \text { is } 0.279
$$

If 1.50 moles of CO_{2} and 1.50 moles of H_{2} are added to a 1.00 L container, what would the [CO] be at equilibrium?
22. Given that the equilibrium constant K_{eq} for the reaction:

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})} \quad \text { is } 0.015 \text { at } 25^{\circ} \mathrm{C},
$$

if 1.0 mole of each gas is added to a 1.0 L container at $25^{\circ} \mathrm{C}$, which way will the equation shift in order to reach equilibrium?
23. Calculate the equilibrium constant K_{eq} for the following reaction:

$$
2 \mathrm{~A}_{2(\mathrm{~g})}+3 \mathrm{~B}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{~A}_{2} \mathrm{~B}_{3(\mathrm{~g})}
$$

given that the partial pressure of each substance at equilibrium is as follows:
Partial Pressure of A2 $=20.0 \mathrm{kPa}$, Partial Pressure of $\mathrm{B}_{2}=30.0 \mathrm{kPa}$, Partial Pressure of $\mathrm{A}_{2} \mathrm{~B}_{3}=5.00 \mathrm{kPa}$.
24. Consider the following equilibrium system: $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftarrows \mathrm{C}_{(\mathrm{g})}$
1.0 mole of A and 2.0 moles of B are simultaneously injected into an empty 1.0 L container. At equilibrium (after 5.0 minutes), [C] is found to be 0.20 M . Make calculations and draw graphs to show how each of [A], [B] and [C] change with time over a period of 10.0 minutes. (HINT: You have to make a table first.)

TIME (minutes)
25. Given the reaction:

$$
4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-113 \mathrm{~kJ}
$$

How will the value of the equilibrium constant K_{eq} at $550^{\circ} \mathrm{C}$ compare with it's value at $450^{\circ} \mathrm{C}$?

Explain your answer. \qquad
26. The following system is at equilibrium, in a closed container:

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{~N}_{2(\mathrm{~g})}+\text { Heat }
$$

a) How is the amount of N_{2} in the container affected if the volume of the container is

doubled?

b) How is the rate of the forward reaction affected if more water vapor is introduced into the container?
c) How is the amount of O_{2} in the container affected if a catalyst is added?
27. At a certain temperature, $K_{\text {eq }}$ for the reaction:

$$
3 \mathrm{C}_{2} \mathrm{H}_{2} \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{6} \text { is } 5.0 .
$$

If the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $0.40 \mathrm{moles} / \mathrm{L}$, what is the equilibrium concentration of $\mathrm{C}_{6} \mathrm{H}_{6}$?

