Molarity Practice

Name: \qquad
Date: \qquad

1. Calculate the molarity of the following solutions:
a) 45 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in 150 mL of solution.
b) 24.6 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in 75 mL of solution.
c) 73.1 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in 125 mL of solution.
2. What is the concentration of sulphate ions, SO_{4}^{-2}, in each of the following?
a) $0.75 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
b) $1.35 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
3. What is the molarity of chlorine ions in solution when $47 \mathrm{~g} \mathrm{of} \mathrm{AlCl}_{3}$ is dissolved in a 210 mL of solution?
4. Which of the following solutions has the highest concentration? Prove using calculations.
A) 12.5 g of CaCl_{2} in 40 mL of solution
B) 20.9 g of MgI_{2} in 35 mL
5. How many grams of salt (NaCl) need to be dissolved in 300 mL of solution to give you a solution that has a concentration of 1.2 M ? (Hint: you need to work backwards on this one. You are given the molarity and the liters, so find the moles and convert to grams.)
6. Calculate the number of grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that would be required to mix 5.0 L of a 0.10 M solution.
7. Calculate the number of grams of NaOH that would be required to mix 10.0 L of a 0.400 M solution.
8. Calculate the number of grams of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right) 2$ that would be required to mix 20.0 L of a 0.0100 M solution.
9. A calcium chloride solution was prepared by dissolving 54.0 of of calcium chloride in sufficient water to make a final solution volume of 2.00 L . What is the molarity of the solution?
10. If 26.0 g of NaCl are dissolved to make 250.0 mL of solution, what is the resulting molarity?
11. A 2.00 g sample of NaOH was dissolved in water to produce a volume of exactly 200.0 mL . What is the molarity of the solution?
12. How many millilitres of $0.500 \mathrm{M} \operatorname{Li2CO} 3$ solution are required to supply o.010omol Li 2 CO 3 ?
13. What volume of a 1.80 M solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$ contains 5.00 of $\mathrm{H}_{2} \mathrm{CO}_{3}$?
14. How many millilitres of $0.250 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ solution are required to supply $0.100 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3}$?
15. What volume of a 1.20 M solution of AgNO_{3} contains 55.0 G of AgNO_{3} ?
