Acid/Base II Review

Name: \qquad Block: \qquad

1a) Write the net ionic equation for the hydrolysis reaction between $\mathrm{NH}_{4} \mathrm{Cl}$ and water.
b) Will NaHSO_{3} produce an acidic or basic solution when dissolved in water? Support your conclusions with appropriate reactions and calculations.
2. Calculate the pH of $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$.
3. Calculate the pH of $2.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$.
4. A 1.0 L solution contains 1.00 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in equilbrium with $1.00 \mathrm{~mol} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
a) What is this type of solution called? Write an equation to represent this equilbrium.
b) What is the pH of this solution?
c) Explain why the pH of this solution does not change significantly when 10.0 mL of 1.0 M KOH is added.
5. A weak acid $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ is dissolved in water. Write a chemical equation to represent this system.

6a). Write a chemical equation representing the hydrolysis of sodium acetate.
b). Calculate the K_{b} value for the hydrolysis in part a) above.
7. An acid is known to be either iodic, acetic, or benzoic. A 0.200 M solution of this acid is found to have a pH of 2.44 . Find the K_{a} of the solution and identify the acid.
8. In a titration, 25.00 mL of 0.10 M HCl was neutralized by slowly adding 50.00 mL of 0.10 M NaOH
a) Sketch the titration curve for the reaction and label:

- the initial pH of the HCl
- the volume of NaOH required to neutralize the HCl
- the pH of the equivalence point
b) Select a suitable indicator for this titration.

9. For a titration of NH_{3} with 0.50 M HCl , give two characteristics of the titration curve and select a suitable indicator.
10. Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, is a weak base with $\mathrm{K}_{\mathrm{b}}=8.5 \times 10^{-6}$.
a) Write the equilibrium formed when hydrazine dissolves in water.
b) Identify the conjugate acid of hydrazine and calculate its K_{a}.
11. A student predicts that MgO will form an acidic solution in water. Evaluate this prediction, including any appropriate equations.
12. The indicator bromcresol green may be represented as HInd. The acid-base equation is HInd $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+$Ind $^{-}$
a) What colour is this indicator in distilled water. Explain.
b) When this indicator is added to a solution of acetic acid, the indicator's colour turns from blue to yellow. Explain the colour change.
13. Consider the following equilibrium: $\quad \mathrm{HInd}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+$Ind $^{-}$

Explain why the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{a}$ at the transition point of an indicator.
14. The pain killer morphine (Mor) acts as a weak base.

Mor $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HMor}^{+}+\mathrm{OH}^{-}$
Given that a 0.010 M morphine solution has a pH of 10.10 , calculate the K_{b} of morphine.
15. Write the equations for the hydrolysis reactions of the salt ammonium oxalate. Will the resulting solution be acidic or basic?
16. A 10.00 mL sample of $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ was placed in a flask and titrated with 0.50 M NaOH . Explain why the pH is not 7 at the equivalence point for this reaction. Be more specific than just stating that it is because it is a weak acid - strong base titration.
17. A solution of the salt $1.0 \mathrm{M} \mathrm{NaNO}_{2}$ is slightly basic and a solution of 1.0 M CH 3 COOH is acidic. Which solution would have the greater electrical conductivity? Explain.
18. Write an equation representing the formation of acid rain from an oxide.
19. List two reactants that when combined would produce a buffer solution. Write an equation to represent this buffer. What happens to the pH of this buffer when a small amount of HCl is added? Explain why.
20. What concentration of HCOOH is required to produce a solution with a pH of 3.245 ?
21. What concentration of the base CN^{-}is required to produce a solution with a pH of 12.23 ?
22. Using equations and explanations, show that a $1.0 \mathrm{M} \mathrm{HNO}_{3}$ solution will conduct better than a 1.0 M HIO 3 solution.
23. Consider the following buffer system:
$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

$$
1.0 \mathrm{M} \quad 1.0 \mathrm{M} \quad \text { very small }
$$

a) What is the pH of the buffer?
b) Explain (use equations to help) how the buffer works if a small amount of OH^{-}is added to the solution and how the pH will change.
24. You find an unknown acid in the laboratory and want to find the pH . Describe two ways you could find the pH .

