Unit 4: Acid/Base I | I) Introduction to Acids and Bases | |--| | What is an acid? | | What are properties of acids? 1) Acids react with 2) Acids create when in solution and therefore 3) Acids react with some to product H ₂ gas. 4) Acid turns litmus paper 5) Acids taste to other substances. | Jul 29-12:46 PM Jul 29-12:50 PM | I) Introduction to Acids and Bases | | |---|---------| | What is an acid? a substance that donates H ⁺ to another substance (thu contain hydrogen) | | | What are properties of acids? 1) Acids react with bases. | | | 2) Acids create electrolytes (ions) | when in | | solution and therefore <u>conduct</u> 3) Acids react with some <u>metals</u> |
to | | product H ₂ gas. | | | 4) Acid turns litmus paperred5) Acids tastesour | | | 6) Acids donate H ⁺ to other subst | ances. | | | | Jul 29-12:50 PM | What is a base? | |---| | What are properties of bases? 1) Bases react with 2) Bases create in solution and therefore 3) Bases feel 4) Bases turn litmus paper 5) Bases taste 6) Bases accept from other substances | Jul 29-12:54 PM | What is a base? | |--| | a substance that accepts H ⁺ from another substance | | | | What are properties of bases? | | 1) Bases react with <u>acids</u> . | | 2) Bases createelectrolytes (ions) in | | solution and therefore <u>conduct</u> . | | 3) Bases feel <u>slippery</u> . | | 4) Bases turn litmus paperblue | | 5) Bases taste <u>bitter</u> . | | 6) Bases accept H ⁺ from other substances | | | | | | | | II) Arrhenius Acids and Bases | |--| | Svante Arrhenius was a Swedish scientist who lived from 1859-1927. In 1884, he proposed the following definitions for acids and bases: Arrhenius Acid: | | Arrhenius Base: | | These definitions stood until 1923, when they were revised by Bronsted (Danish) and Lowry (English), as we will see shortly. | Jul 29-12:54 PM Jul 29-12:59 PM #### II) Arrhenius Acids and Bases Svante Arrhenius was a Swedish scientist who lived from 1859-1927. In 1884, he proposed the following definitions for acids and bases: Arrhenius Acid: a substance that releases H⁺ in water #### Arrhenius Base: a substance that releases OH in water These definitions stood until 1923, when they were revised by Bronsted (Danish) and Lowry (English), as we will see shortly. Jul 29-12:59 PM When an acid reacts with a base (one which contains OH⁻), what is produced? ex. $$HCl_{(aq)} + NaOH_{(aq)} \xrightarrow{}$$ acid + base makes The OH acts as the base and takes the H⁺ to make _____. What type of reaction is this? Acids and bases are both harmful substances, but if they react in stoichiometric amounts (so that no excess acid or base is left over), the products are not harmful (). Jul 29-1:02 PM When an acid reacts with a base (one which contains OH⁻), what is produced? ex. $$HCl_{(aq)} + NaOH_{(aq)} \longrightarrow H_2O_{(l)} + NaCl_{(aq)}$$ acid + base makes water + salt The OH acts as the base and takes the H⁺ to make H₂O. What type of reaction is this? Acids and bases are both harmful substances, but if they react in stoichiometric amounts (so that no excess acid or base is left over), the products are not harmful (water and salt). What is a salt? When the salt is produced in an acid-base reaction, depending on what salt is produced, what two results can occur? Jul 29-1:02 PM Jul 29-1:10 PM #### What is a salt? an ionic compound made up of a metal cation and a non-metal anion When the salt is produced in an acid-base reaction, depending on what salt is produced, what two results can occur? If the salt that's produced is SOLUBLE, it will stay dissociated as aqueous ions in the water. If the salt that's produced is LOW SOLUBILITY, it will precipitate out as a solid. Another example: $H_2SO_{4(aq)} + Sr(OH)_{2(aq)} \longrightarrow$ What is a net ionic equation? What is the net ionic equation of the reaction above? What was the net ionic equation of the first neutralization equation we looked at (remember, only the things that change are included in the net). http://www.wiley.com/college/chem/brady184764/resources/ch04/index_ch4_bytype.html Jul 29-1:10 PM Jul 29-1:13 PM Another example: $$H_2SO_{4(aq)} + Sr(OH)_{2(aq)} \longrightarrow 2H_2O_{(l)} + SrSO_{4(s)}$$ acid + base water + salt (low solub) What is a net ionic equation? an equation that includes only the substances that react (chemically change) What is the net ionic equation of the reaction above? $$2H^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + Sr^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \longrightarrow 2H_{2}O_{(I)} + SrSO_{4(s)}$$ (aq) + OH (aq) - H₂O₍₁₎ http://www.wiley.com/college/chem/brady184764/resources/ch04/index_ch4_bytype.htm Jul 29-1:13 PM #### **Assignment 1** Read Hebden pages 109 to 114 and do questions #1-4 on page 112 Jul 29-1:20 PM #### Assignment 1 Read Hebden pages 109 to 114 and do questions #1-4 on page 112 answers in the back of Hebden III) Bronsted-Lowry Acids and Bases Part 1 Bronsted-Lowry definitions from 1923 Bronsted-Lowry Acid: Bronsted-Lowry Base: Jul 29-1:20 PM Jul 29-1:21 PM #### III) Bronsted-Lowry Acids and Bases Part 1 Bronsted-Lowry definitions from 1923 Bronsted-Lowry Acid: a substance that donates H* to another substance Bronsted-Lowry Base: a substance that accepts H⁺ from another substance Practice: Label each reactant as an acid or a base depending on if it donates H⁺ or accepts H⁺. Some of the reactions are 100% and some are at equilibrium. You will learn why soon. 1. $HCl + H_2O \Rightarrow H_3O^+ + Cl^-$ 2. $NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$ 3. $CO_3^{2-} + H_2O \Leftrightarrow HCO_3^{--} + OH^{--}$ What's different about H2O in #1 compared to 2? Why can CO_{3^2} only be a base? Jul 29-1:21 PM Jul 29-1:23 PM Practice: Label each reactant as an acid or a base depending on if it donates H⁺ or accepts H⁺. Some of the reactions are 100% and some are at equilibrium. You will learn why soon. 1. $$\underline{HCl} + \underline{H2O} \Rightarrow \underline{H3O^{+}} + \underline{Cl^{-}}$$ 2. $$NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$$ 3. $$CO_3^{2^-}$$ + $H_2O \Leftrightarrow HCO_3^- + OH^-$ What's different about H₂O in #1 compared to 2? In #1 it acts as a base and in #2 Why can CO₂² only be a base? In #1 acts as a base and in #2 an acid Why can CO₃²⁻ only be a base? It doesn't have an H+ Jul 29-1:23 PM 4. $$HPO_4^{2-} + HBr \Rightarrow H_2PO_4^{-} + Br^{-}$$ 5. $$HPO_4^{2-} + HCO_3^{-} \Leftrightarrow H_2PO_4^{-} + CO_3^{2-}$$ 6. $$H_2PO_4^- + HF \Leftrightarrow H_3PO_4 + F^-$$ 7. $$H_2PO_{4^-} + H_2O \Leftrightarrow HPO_{4^{2^-}} + H_3O^+$$ What's different about H₂PO₄ in #6 & 7? Jun 13-9:13 AM 4. $$HPO_4^{2^-} + HBr \Rightarrow H_2PO_4^- + Br^-$$ 5. $$HPO_4^2$$ + HCO_3 \Leftrightarrow H_2PO_4 + CO_3 2 6. $$H_2PO_4$$ + H_3PO_4 + F_4 7. $$H_2PO_4^- + H_2O \Leftrightarrow HPO_4^{2-} + H_3O^+$$ What's different about H2PO4 in #6 & 7? in #6 it acts as a base and in #7 it acts as an acid Jun 13-9:13 AM Notice from the practice equations that when bases do not contain OH, the products are not water and salt. Why is water not a product? Jul 29-1:31 PM Notice from the practice equations that when bases do not contain OH, the products are not water and salt. Why is water not a product? Water is made from OH accepting H⁺ to make H₂O. If the base is not an 'OH base', then water is not a product. #### Assignment 2 Read Hebden page 116 and do #11 on page 117 Jul 29-1:33 PM Jul 29-1:31 PM #### IV) Strong and Weak Acids and Bases **Strong** acids and bases react to completion (100%) in solution (in water). #### **Examples** strong acid: $$HCI_{(aq)} + H_2O_{(l)} \longrightarrow 0.10M$$ http://www.dlt.ncssm.cdu/core/Chapter16-Acid-Base_Equilibria/Chapter16-Acid-Base_Equilibria/Chapter16-Acid-Base: $NH_2^-(aq) + H_2O_{(l)} \longrightarrow 0.200M$ The $OH^{-}_{(aq)}$ produced is now ready to act as a base and accept H^{+} . Jul 29-1:34 PM #### IV) Strong and Weak Acids and Bases **Strong** acids and bases react to completion (100%) in solution (in water). #### Examples $$\begin{array}{c} \text{strong acid: } H\text{Cl}_{(aq)} + H_2\text{O}_{(I)} \longrightarrow \begin{array}{c} H_3\text{O}^{\dagger}_{(aq)} + \text{Cl}^{\dagger}_{(aq)} \\ 0.10\text{M} \end{array} \\ \begin{array}{c} 0.10\text{M} \\ \text{http://www.dl h.csm. cdu core. Chapter 16-Acid-blase_Equilibria/Chapter 16-Acid-blase_Equilibria/Ch$$ The OH-(aq) produced is now ready to act as a base and accept H⁺. Jul 29-1:34 PM **Weak** acids and bases do not react to completion in solution (in water). They create an equilibrium with reactants heavily favoured. #### **Examples** 1.0M weak acid: $$HF_{(aq)} + H_2O_{(l)} \longrightarrow$$ http://www.dlt.ncssm.edu/core/Chapter16-Acid-Base_Equilibria/Chapter16-Animations/WeakAcidEquilibrium html 1.0M weak base: $$CO_3^{2-}$$ (ag) + $H_2O_{(1)}$ http://www.chembio.uoguelph.ca/educmat/chm19104/chemtoons/chemtoons.htm http://www.wwoorton.com/collego/chemistry/gilbert2/tutorials/interface.asp?chapter=chapter_16 &folder=asid_base_inoriation Jul 29-1:40 PM **Weak** acids and bases do not react to completion in solution (in water). They create an equilibrium with reactants heavily favoured. #### **Examples** $$\begin{array}{c} \text{1.0M weak acid:} \\ \text{HF}_{(aq)} \ + \ \text{H}_2\text{O}_{(I)} & \longrightarrow \\ \text{\sim0.95M} \\
\text{\sim0.05M} \ & \sim$0.05M \ \sim0.05M \\ \\ \text{\sim0.05M} \ & \sim$0.05M \end{array}$$ http://www.chembio.uoguelph.ca/educmat/chm19104/chemtoons/chemtoons.htm http://www.wwnorton.com/college/chemistry/gilbert2/tutorials/interface.asp/chapter=chapter_16 dfolder=acid_base_jourzation Jul 29-1:40 PM #### V) H⁺ and H₃O⁺ The most abundant hydrogen atom, by far, is hydrogen-1, which has an atomic weight of 1amu, which means it must be made up of ____ proton, ___ neutron, and ____ electron. H⁺ has lost an _____, and thus is simply a _____, which is what it is commonly called. #### V) H⁺ and H₃O⁺ The most abundant hydrogen atom, by far, is hydrogen-1, which has an atomic weight of 1amu, which means it must be made up of __1 proton, oneutron, and __1 electron. H⁺ has lost an <u>electron</u>, and thus is simply a <u>proton</u>, which is what it is commonly called. Jul 29-7:44 PM Jul 29-7:44 PM When an acid such as HCl is put into solution, what happens? Simple version: HCl_(aq) - The equation suggests that HCl gives up a proton 100% in water. However, in the reaction above, no substance is accepting the proton, which is inaccurate. However, we use this reaction to show what HCl does in the presence of any base. If HCl is in solution and just water is present, HCl donates its proton to water, as shown below: $$HCI_{(aq)} + H_2O_{(l)} \longrightarrow$$ Both equations are commonly used, so H⁺ is analogous to H₃O⁺ (called *hydronium*). http://group.chem.iastate.edu/Greenbowe/sections/projectfolder/animations/HCl(aq).html Jul 29-8:05 PM When an acid such as HCl is put into solution, what happens? Simple version: $HCl_{(aq)} \longrightarrow H^{+}_{(aq)} + Cl_{(aq)}$ The equation suggests that HCl gives up a proton 100% in water. However, in the reaction above, no substance is accepting the proton, which is inaccurate. However, we use this reaction to show what HCl does in the presence of any base. If HCl is in solution and just water is present, HCl donates its proton to water, as shown below: $$HCI_{(aq)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$ Both equations are commonly used, so H⁺ is analogous to H₃O⁺ (called *hydronium*). http://group.chem.iastate.edu/Greenbowe/sections/projectfolder/animations/HCl(aq).html Jul 29-8:05 PM #### VI) The Acid/Base Table Where are the acids on the table, and how are they arranged? Strong Acids: Weak Acids: Jul 29-8:12 PM #### VI) The Acid/Base Table Where are the acids on the table, and how are they arranged? left side, arranged from strongest to weakest (top to bottom) #### Strong Acids: -top left on the table (shaded region) -all react 100% to donate H⁺ (single arrow) -all strong acids are the same strength (because they all react 100%) #### Weak Acids: -middle left region on the table (unshaded) -all weak acids donate H⁺, but much less than 100% (double arrow) -the weak acids are ranked from strongest (top) to weakest (bottom), in terms of how much H+ they donate Jul 29-8:12 PM Notice the table uses the 'simple' version of the two reactions described earlier ex. $$HCI \longrightarrow H^{+} + CI^{-}$$ This is because the acids put into water only react with water if it's the only other substance present. If a base different than water is present, it will react with the base. So the reaction above is the 'general form'. Notice the table uses the 'simple' version of the two reactions described earlier This is because the acids put into water only react with water if it's the only other substance present. If a base different than water is present, it will react with the base. So the reaction above is the 'general form'. in just water: HCl + H₂O -→ H₂O⁺ + Cl⁻ if another base is in water such as ammonia: HCl + NH₃ ----- NH₄⁺ + Cl⁻ in both cases, HCl gave up H^{+} , as depicted at the top Jul 30-7:55 AM Jul 30-7:55 AM Where are the bases on the acid/base table, and how are they arranged? Strong Bases: Weak Bases: Jul 30-7:59 AM What strong bases are missing from the acid/base table? How do these types of strong bases behave in water? How are weak acids/bases different from strong acids/bases, and how does this affect their conductivity? Jul 30-8:05 AM Which substances listed as bases are not bases at all? Which substances listed as acids are not acids at all? Where can water be found on the table? Where are the bases on the acid/base table, and how are they arranged? ongest (bottom) to weakest (top) #### Strong Bases: -bottom right of table (although most strong bases are not listed in the table - all the 'OH' bases such as NaOH) -react 100% by accepting H* (single arrow) -all strong bases are the same strength (all react 100%) #### Weak Bases: -middle right of the table (unshaded region) -weak bases react much less than 100% by accepting H^{\star} (double -weak bases ranked in strength (in terms of how much H⁺ they can accept) from bottom (stronger) to top (weaker) Jul 30-7:59 AM What strong bases are missing from the acid/base table? How do these types of strong bases behave in water? -the strong bases missing are the group 1 and 2 'OH' bases such as LiOH, NaOH, KOH, Ca(OH) $_2$, Mg(OH) $_2$ etc. -these strong bases, when in water, dissociate 100% into ions: NaOH \longrightarrow Na $^+$ + OH $^-$ -the OH then acts as a base and will accept H+ How are weak acids/bases different from strong acids/bases, and how does this affect their conductivity? http://www.chembio.uoguelph.ca/educmat/chm19104/chemtoons/chemtoons.htm -strong acids & bases react 100%, so they create many ions and thus conduct very well -weak acids & bases react approx. 5%, so create a small number of ions, thus they conduct, but not as well as strongs Jul 30-8:05 AM Which substances listed as bases are not bases The bases in the top right shaded region are listed as bases, but cannot accept H⁺ (no reverse arrow). They are opposite the strong acids. Which substances listed as acids are not acids at **all?** The acids on the bottom left shaded region cannot donate H⁺ (no forward arrow). They are opposite the strong bases. Where can water be found on the table? -as the weakest of the weak acids -as the weakest of the weak bases Jul 30-8:10 AM Jul 30-8:10 AM Water is the weakest of the weak bases, so any other base present in solution will react with any acid put into the solution before water will. Water is the weakest of the weak acids, so any other acid present in solution will react with any base put into solution before water will. VI) Bronsted-Lowry Acids & Bases Part 2 Define the following terms: **Monoprotic Acid (** Diprotic Acid (): Polyprotic Acid (): **Amphiprotic Substance:** Jul 30-8:16 AM Jul 30-8:17 AM #### VI) Bronsted-Lowry Acids & Bases Part 2 Define the following terms: Monoprotic Acid (HA): an acid with only one H⁺ to donate Diprotic Acid (H₂A): an acid that has two H⁺ to donate Polyprotic Acid (HA): an acid with two or more $\boldsymbol{H}^{\!\scriptscriptstyle +}$ to donate #### **Amphiprotic Substance:** -can act as an acid in the presence of a base AND -can act as a base in the presence of an acid How can you tell if a substance is amphiprotic using the acid/base table? List as many amphiprotic substances as you can find on the table. For one of those substances, give an example of that substance acting as an acid, and an example of it acting as a base: Jul 30-8:17 AM Jul 30-8:22 AM How can you tell if a substance is amphiprotic using the acid/base table? List as many amphiprotic substances as you can find on the table. -it is on both sides of the table in the middle, unshaded region H₂O, H₂PO₄⁻, HPO₄²-, HSO₃⁻, HCO₃⁻, HC₂O₄⁻, H₂C₆H₅O₇⁻, HC₆H₅O₇²- For one of those substances, give an example of that substance acting as an acid, and an example of it acting as a base: ``` HSO_3^- + NH_3 \implies SO_3^{2-} + NH_4^+ HSO_3^- + HF \longrightarrow H_2SO_3 + F^- ``` Notice that all amphiprotic substances (except for H₂O) are polyatomic groups that contain at least one proton and are negatively charged. In a reaction between two amphiprotic substances in aqueous solution, how can you use your table to find out which substance will act as the acid and which will act as the base? Jul 30-8:22 AM Jul 30-8:27 AM Notice that all amphiprotic substances (except for H_2O) are polyatomic groups that contain at least one proton and are negatively charged. In a reaction between two amphiprotic substances in aqueous solution, how can you use your table to find out which substance will act as the acid and which will act as the base? Look for the two substances on the left. Whichever is higher on the left side is better at being an acid, and therefore will act as the acid. The other substance will be the base. Jul 30-8:27 AM Practice: Using your table, label each reactant as an acid or base, and determine the products. Then label each product as an acid or base (look at the reverse reaction). 1. $$HCO_3$$ + H_2PO_4 \Leftrightarrow H_2CO_3 + HPO_4 A 2. $$HPO_4^2 + HSO_4^- \Leftrightarrow H_2PO_4^- + SO_4^{2^-}$$ 3. $$\underline{\text{H}_2\text{O}} + \underline{\text{H}}\text{SO}_3^- \Leftrightarrow \underline{\text{H}_3\text{O}}^+ + \underline{\text{SO}_3}^{2^-}$$ 4. $$HCO_3^{-} + HSO_4^{-} \Leftrightarrow H_2CO_3 + SO_4^{-2}$$ B A B Jul 30-8:30 AM #### VII) Conjugate Acid-Base Pairs Conjugate acid/base pairs are particles that are directly opposite each other on the table Examples: conjugate acid conjugate base H₂PO₄ H₂PO₄ Is HCI/Cl⁻ a conjugate acid/base pair? What is the difference between a conjugate acid and its conjugate base? Practice: Using your table, label each reactant as an acid or base, and determine the products. Then label each product as an acid or base (look at the reverse reaction). Jul 30-8:30 AM #### **Assignment 3** Do Hebden page 117 #12, then read pages 117 & 118 and to page 119 #13 & 14 Jul 30-8:35 AM #### VII) Conjugate Acid-Base Pairs Conjugate acid/base pairs are particles that are directly opposite each other on the table Examples: conjugate acid
conjugate base H₃PO₄ H₂PO₄ HCOO⁺ HCOO⁺ HS⁻ Is HCI/Cl⁻ a conjugate acid/base pair? Yes, HCI / Cl is considered a conjugate acid/base paier even though Cl is not a base at all What is the difference between a conjugate acid and its conjugate base? they differ by one proton (H*) Jul 30-8:31 AM Jul 30-8:31 AM | A base has one | proton than its | |------------------------------|----------------------| | conjugate acid, and an acid | has one | | proton than its conjugate ba | se. | | Remember to adjust the ch | narge when writing a | conjugate. Example: Write the conjugate base of NH₄⁺: Write the conjugate base of CH₃COOH: Write the conjugate acid of HPO₄²: Jul 30-9:23 AM A base has one less proton than its conjugate acid, and an acid has one more proton than its conjugate base. Remember to adjust the charge when writing a conjugate. Example: Write the conjugate base of NH₄⁺: NH₃ Write the conjugate base of CH₃COOH: CH₃COO⁻ Write the conjugate acid of HPO₄²: H₂PO₄- Jul 30-9:23 AM What is the conjugate base of each? HCIO₄ / H₃BO₃ / H₂CO₃ / $HC_2O_4^-$ What is the conjugate acid of each? CN⁻/ H₂PO₃⁻/ NH₃/ PO₄³⁻/ Using your table, complete the following equation and identify the conjugate acid/base pairs: Jul 30-9:26 AM What is the conjugate base of each? HCIO₄ / CIO₄ H_3BO_3/H_2BO_3 $H_2CO_3 / HCO_3^- HC_2O_4^- / C_2O_4^{2-}$ What is the conjugate acid of each? CN⁻/ HCN $H_{2}PO_{3}^{-}/H_{3}PO_{3}$ NH_3 / NH_4^+ PO₄³⁻ / HPO₄²⁻ Using your table, complete the following equation and identify the conjugate acid/base pairs: $$HCO_3^- + H_2PO_4^- \longrightarrow H_2CO_3 + HPO_4^{2-}$$ A B Jul 30-9:26 AM Remember: Strong acids (such as HCI) have a conjugate base (Cl⁻ - though it's not a base at all), but they are **not** at equilibrium. Strong bases such as NaOH have a conjugate acid (Na⁺ - even though it's not an acid at all), but they are **not** at equilibrium. Assignment 4: Complete each equation and identify the conjugate acid-base pairs 1. $$HNO_3 + H_2O \Rightarrow$$ 2. $$H_2O + HNO_2 \Leftrightarrow$$ 3. $$HIO_3 + NH_3 \Leftrightarrow$$ 4. $$CO_3^{2-} + HF \Leftrightarrow$$ Jul 30-9:32 AM Jul 30-4:32 PM Assignment 4: Complete each equation and identify the conjugate acid-base pairs 1. $$\frac{\text{HNO}_3 + \text{H}_2\text{O}}{\text{A}} \Rightarrow \frac{\text{NO}_3}{\text{B}} + \frac{\text{H}_3\text{O}^+}{\text{A}}$$ 2. $$H_2O + HNO_2 \Leftrightarrow H_3O^+ + NO_2$$ A B 3. $$HIO_3 + NH_3 \Leftrightarrow IO_3 + NH_4$$ 4. $$CO_3^{2-} + HF \Leftrightarrow HCO_3^{-} + F$$ B A B Jul 30-9:32 AM 7. $$H_3BO_3 + HO_2$$ \Leftrightarrow 8. $$C_2O_4^{2-} + H_2O \Leftrightarrow$$ 9. $$H_2O + H_2SO_3 \Leftrightarrow$$ Jul 30-4:36 PM 5. $$HS^{-} + H_{3}PO_{4} \Leftrightarrow H_{2}S + H_{2}PO_{4}^{-}$$ B A A B 6. $HCO_{3}^{-} + CN^{-} \Leftrightarrow CO_{3}^{2-} + HCN$ A B B A A 7. $H_{3}BO_{3} + HO_{2}^{-} \Leftrightarrow H_{2}BO_{3}^{-} + H_{-2}O_{2}$ B A A B 8. $C_{2}O_{4}^{2-} + H_{2}O \Leftrightarrow HC_{2}O_{4}^{-} + OH^{-}$ B A B 9. $H_{2}O + H_{2}SO_{3} \Leftrightarrow H_{3}O^{+} + HSO_{3}^{-}$ B A B Jul 30-4:36 PM 10) Do Hebden page 121 numbers 17-19 Jul 30-4:35 PM ## 10) Do Hebden page 121 numbers 17-19 answers in the back of Hebden # VIII) Determining Whether Reactants or Products are Favoured in an Acid/Base Reaction Finish the reaction and label conjugate acids and bases: What do acids do that make them acids? There is a competition between the two acids HF and H_2CO_3 to donate the proton, and this will have repercussions as to what side is favoured. Which of the two is the stronger acid? Jul 30-4:35 PM Jul 30-4:46 PM # VIII) Determining Whether Reactants or Products are Favoured in an Acid/Base Reaction Finish the reaction and label conjugate acids and bases: $$HCO_3^- + HF \longrightarrow H_2CO_3 + F^-$$ B A A B What do acids do that make them acids? There is a competition between the two acids HF and H_2CO_3 to donate the proton, and this will have repercussions as to what side is favoured. Which of the two is the stronger acid? Jul 30-4:46 PM So which side of the equilibrium will be favoured? Will the K_{eq} be greater or less than 1? RULE: The side of the reaction with the ____ acid is always favoured. Jul 30-4:51 PM #### So which side of the equilibrium will be favoured? Products, as HF will be better at donating H^{\star} than H_2CO_3 , causing the forward reaction to initially predominate over the reverse reaction, so the products are favoured. Will the K_{eq} be greater or less than 1? if products are favoured, the K_{eq} is greater than 1 RULE: The side of the reaction with the WEAKER acid is always favoured. Jul 30-4:51 PM **<u>Assignment 5:</u>** State whether reactants or products are favoured. - 1. $NH_{4}^{+} + H_2O \Leftrightarrow NH_3 + H_3O^{+}$ - 2. $H_2S + NH_3 \Leftrightarrow HS^- + NH_4^+$ - 3. $H_2PO_4^- + HS^- \Leftrightarrow HPO_4^{2-} + H_2S$ - 4. $H_2O_2 + SO_3^{2-} \Leftrightarrow HO_2^{-} + HSO_3^{-}$ - 5. CH₃COOH + PO₄³⁻ ⇔ CH₃COO⁻ + HPO₄²⁻ - 6. $H_2PO_4^- + C_2O_4^{2-} \Leftrightarrow HPO_4^{2-} + HC_2O_4^{-}$ - 7. $H_2SO_3 + SO_4^{2-} \Leftrightarrow HSO_3^{-} + HSO_4^{-}$ Jul 30-4:54 PM # **<u>Assignment 5:</u>** State whether reactants or products are favoured. - 1. $NH_4^+ + H_2O \Leftrightarrow NH_3 + H_3O^+$ reactants - 2. $H_2S + NH_3 \Leftrightarrow HS^- + NH_4^+$ products - 3. $H_2PO_4^- + HS^- \Leftrightarrow HPO_4^{2-} + H_2S$ reactants - 4. $H_2O_2 + SO_3^{2-} \Leftrightarrow HO_2^{-} + HSO_3^{-}$ reactants - 5. $CH_3COOH + PO_4^{3-} \Leftrightarrow CH_3COO^{-} + HPO_4^{2-}$ - 6. $H_2PO_4^- + C_2O_4^{2-} \Leftrightarrow HPO_4^{2-} + HC_2O_4^{-}$ reactants - 7. $H_2SO_3 + SO_4^{2-} \Leftrightarrow HSO_3^{-} + HSO_4^{-}$ products #### IX) Strong, Weak, Concentrated, & Dilute The terms **strong** and **weak** differ from the terms **concentrated** and **dilute**. What is a strong acid, and give an example. What is a weak acid, and give an example. What is a concentrated acid, and give an example. What is a dilute acid, and give an example. Jul 30-4:54 PM Jul 30-4:55 PM #### IX) Strong, Weak, Concentrated, & Dilute The terms **strong** and **weak** differ from the terms **concentrated** and **dilute**. What is a strong acid, and give an example. an acid that dissociates 100%: $HCI + H_2O \longrightarrow CI^- + H_3O^+$ What is a weak acid, and give an example. an acid that dissociates approx. 5% HF + H₂O ⇒ F + H₃O+ to create an equilibrium What is a concentrated acid, and give an example. an acid with a high molarity ex. 1M HCl What is a dilute acid, and give an example. an acid with a low molarity ex. 0.0010M HCI The terms **strong**, **weak**, **concentrated**, **and dilute** are used for bases as well. 6M KOH is _____ and ____ . 0.0001M KOH is _____ & ____ . 6M CH₃COOH is ____ & ____ . 0.0001M CH₃COOH is ____ & Notice that a strong acid can be dilute, and a weak acid can be concentrated. Jul 30-8:08 PM The terms **strong**, **weak**, **concentrated**, **and dilute** are used for bases as well. Jul 30-4:55 PM Notice that a strong acid can be dilute, and a weak acid can be concentrated. X) Leveling Effect If you had a 1M solution of each strong acid, which would be the strongest (which would create the greatest $[H_3O^+]$)? So what is the leveling effect? Jul 30-8:08 PM Jul 30-8:12 PM #### X) Leveling Effect If you had a 1M solution of each strong acid, which would be the strongest (which would create the greatest [H₃O⁺])? none - they would all be level in strength as they all dissociate 100% in solution to create 1M ${\rm H}_3{\rm O}^+$ So what is the leveling effect? -the idea that the strong acids are level in strength as they all dissociate 100% -the same is true for strong bases What is the strongest acid that actually exists in water? How does this compare with its position on the acid/base table? What is the strongest base that actually exists in water? Jul 30-8:12 PM Jul 30-8:14 PM What is the strongest acid that actually exists in water? $\rm H_3O^{+},$ as all strong acids dissociate 100% to create it, and it's the strongest of the weak acids (see the table) How does this compare with its position on the acid/base table? - -it's the strongest of the weak acids - -this is why all weak acid equilibria favour reactants What is the strongest base that actually exists in water? -OH⁻, as all strong bases dissociate or react 100% to create it, and it's the strongest of the weak bases (see the table) -this is why all weak base equilibria favour reactants Jul 30-8:14 PM #### **Practice Questions:** 1) Will the $K_{\rm eq}$ be greater or less than 1 for the following equilibrium? Why? $HSO_4^- + NH_3 \implies SO_4^{2-} + NH_4^+$ 2) Which acid has the higher [H₃O⁺] when reacting with water, HCN or CH₃COOH? Why? Jul 30-8:18 PM #### **Practice Questions:** 1) Will the $K_{\rm eq}$ be greater or less than 1 for the following equilibrium? Why? $HSO_4^- + NH_3 \longrightarrow SO_4^{2-} + NH_4^+$ product side favoured since ${\rm HSO_4}^{\scriptscriptstyle -}$ is a stronger weak acid than ${\rm NH_4}^+,$ so the ${\rm K_{eq}}$ > 1 2) Which acid has the higher [H₃O⁺] when reacting with water, HCN or CH₃COOH? Why? $CH_3COOH.$ It's higher on the weak acid list, so it dissociates to a greater extent to create more H_3O^{+} than HCN 3) Will a reaction occur between NH₂⁻ and C₂O₄²⁻? Explain why or why not. 4) Write an equation to show the reaction between NH₂ and water, and explain why products are favoured. Jul 30-8:18 PM Jul 30-8:23 PM 3) Will a reaction occur between NH₂⁻ and C₂O₄²⁻? Explain why or why not. No, as they are both bases, so neither can act as the acid and donate H^+ 4) Write an equation to show the reaction between NH₂ and water, and explain why products are favoured. $NH_2^- + H_2O \longrightarrow NH_3 + OH^-$ -products are favoured because the reactio is 100%, so no reactants remain #### **Assignment 6** Do Hebden pages 125-126 #21-27 and page 133 #38-46 Jul 30-8:23 PM Jul 30-8:26 PM #### **Assignment 6** Do Hebden pages 125-126 #21-27 and
page 133 #38-46 answers in the back of Hebden Jul 30-8:26 PM #### XI) The Ionization of Water Water is amphiprotic, meaning it can act as an in the presence of a base, and a base in the presence of an acid. If two water molecules collide with sufficient kinetic energy and correct geometry, what can occur? $\begin{array}{c} 2H_2O_{(1)} + 59kJ & \longrightarrow \\ \text{http://www.media.pearson.com.au/schools/cw/au_sch_derry_.ibcd_} \\ \text{infirst-Self-designs-inhoritater/15/15/44 html} \end{array} \\ \begin{array}{c} \text{http://wwb.jisy.cumy.edu/-acutpi/NSC/protect.html} \\ \text{Write a K_{eq} equation for the reaction above:} \end{array}$ The K_{eq} for this equation is called the K_w, as 'w' stands for _____ Jul 30-8:27 PM #### XI) The Ionization of Water Water is amphiprotic, meaning it can act as an acid in the presence of a base, and a base in the presence of an acid. If two water molecules collide with sufficient kinetic energy and correct geometry, what can occur? 2H₂O_(I) + 59kJ $$\longrightarrow$$ H₃O⁺(aq) + OH⁻(aq) http://www.media-pearson.com/au/schools/cw/au_sch_derry_ibcsl_ http://web.jips/cumy.edu/-acarpi/NSC/protexch.htm Write a K_{eq} equation for the reaction above: The K_{eq} for this equation is called the K_w , as 'w' stands for water Jul 30-8:27 PM Notice how small the K_w constant is, meaning _____ are heavily favoured in the above reaction, which suggests... Jul 30-8:31 PM $$K_w = [H_3O^{\dagger}][OH] = 1.0 \times 10^{-14}$$ @ 25 C Notice how small the K_w constant is, meaning reactants are heavily favoured in the above reaction, which suggests... that there are very few effective collisions between two water molecules, thus there are very few H_3O^+ and OH^- ions in pure water $http://www.wwnorton.com/college/chemistry/gilbert2/tutorials/interface.asp?chapter=chapter_16\& folder=self_ionization$ This small concentration of ions is why water can moderately conduct. 2 in every 550 million water molecules have an effective collision at 25 degrees C Pure water is neutral. What does 'neutral' mean? Since $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$, and pure water is neutral, then $[H_3O^{\dagger}]=[OH^{-}]$, so $[H_3O^{\dagger}]$ in pure water = _____ and [OH] in pure water = _____ Jul 30-8:31 PM Jul 30-8:36 PM | This small concentration of ions is why water can moderately conduct. 2 in every 550 million water molecules have an effective collision at 25 degrees C Pure water is neutral. What does 'neutral' mean? cations = anions, so $[H_3O^+] = [OH]$ Since $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$, and pure water is neutral, then $[H_3O^+] = [OH^-]$, so $[H_3O^+]$ in pure water = $\frac{1.0 \times 10^{-7}M}{1.0 \times 10^{-7}M}$ and $[OH^-]$ in pure water = $\frac{1.0 \times 10^{-7}M}{1.0 \times 10^{-7}M}$ | [H ₃ O ⁺] and [OH ⁻] must be the same in pure water because every reaction between two water molecules produces If an acid is placed in water, the acid will react with water to produce ions, thereby causing [H ₃ O ⁺] to be than [OH ⁻]. In this case, we have an solution. If base is placed in water, more ions will be produced, thereby creating a solution. | |---|---| | Jul 30-8:36 PM | Jul 30-8:42 PM | | | | | [H ₃ O ⁺] and [OH ⁻] must be the same in pure water because every reaction between two water molecules produces <u>one H₃O⁺ and one OH</u> ⁻ If an acid is placed in water, the acid will react with water to produce <u>H₃O⁺</u> ions, thereby causing [H ₃ O ⁺] to be <u>greater</u> than [OH ⁻]. In this case, we have an <u>acidic</u> solution. If base is placed in water, more <u>OH</u> ⁻ ions will be produced, thereby creating a <u>basic</u> solution. | When an acid or base is placed in water, the concentration of H_3O^+ and OH^- changes, but the K_w remains constant at 1.0 x 10^{-14} (remember, the only thing that alters K_{eq} is). Therefore, according to the K_w equation $1.0 \times 10^{-14} = [H_3O^+][OH^-]$, if one of the hydronium ion or hydroxide ion concentrations increase, the other must | | Jul 30-8:42 PM | Jul 30-8:48 PM | | | | | When an acid or base is placed in water, the concentration of H_3O^+ and OH^- changes, but the K_w remains constant at 1.0 x 10^{-14} (remember, the only thing that alters K_{eq} is $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | Investigate these scenarios using the water equilibrium and LeChatelier's Principle: Acid added to water: 2H ₂ O _(I) + 59kJ ⇒ H ₃ O ⁺ _(aq) + OH ⁻ _(aq) | | Therefore, according to the K_w equation 1.0 x 10 ⁻¹⁴ = $[H_3O^+][OH^-]$, if one of the hydronium ion or hydroxide ion concentrations increase, the other mustdecrease | [H ₉ O ⁺] | Jul 30-8:48 PM Jul 30-8:50 PM Base added to water: $2H_2O_{(I)} + 59kJ \Longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$ [H₃O⁺] Conclusion: In acid: [H₃O⁺] ___ 1.0 x 10⁻⁷M & [OH⁻] ___ 1.0 x 10⁻⁷M In base: [H₃O⁺] ___ 1.0 x 10⁻⁷M & [OH⁻] ___ 1.0 x 10⁻⁷M Jul 30-8:50 PM Jul 30-8:50 PM Practice Questions: 1) Calculate the $[OH^{-}]$ in a solution in which $[H_3O^{+}]$ is 1.0 x $10^{-12}M$. Is the solution neutral, acidic, or basic? Jul 30-8:50 PM Aug 3-9:56 AM #### **Practice Questions:** 1) Calculate the [OH $^-$] in a solution in which [H $_3$ O $^+$] is 1.0 x 10 $^{-12}$ M. Is the solution neutral, acidic, or basic? $$K_w = [H_3O^*][OH]$$ $1.0 \times 10^{-14} = (1.0 \times 10^{-12})[OH]$ $[OH] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-12}} = 1.0 \times 10^{-2}M$ Basic, since [OH] > $[H_3O^{\dagger}]$ 2) Calculate the $[H_3O^{\dagger}]$ in a solution in which $[OH^{-}]$ is 1.0 x $10^{-8}M$. Is the solution acidic, basic, or neutral? Aug 3-9:56 AM Aug 3-10:00 AM 2) Calculate the [H₃O⁺] in a solution in which $[OH^{-}]$ is 1.0 x 10⁻⁸M. Is the solution acidic, basic, or neutral? ``` \mathsf{K}_{\mathsf{w}} = [\mathsf{H}_{\mathsf{3}}\mathsf{O}^{\scriptscriptstyle{+}}][\mathsf{O}\mathsf{H}^{\scriptscriptstyle{-}}] 1.0 \times 10^{-14} = [H_3O^+](1.0 \times 10^{-8}) [H_3O^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-8}} = 1.0 \times 10^{-6}M ``` Acidic, since $[H_3O^+] > [OH^-]$ Sep 11-5:04 PM - Aug 3-10:00 AM - 3) What is the $[H_3O^+]$ and $[OH^-]$ in 0.0010M HCI? - 3) What is the $[H_3O^+]$ and $[OH^-]$ in 0.0010M HCI? $K_w = [H_3O^+][OH^-]$ $1.0 \times 10^{-14} = (1.0 \times 10^{-3})[OH]$ $[OH^{-}] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}} = 1.0 \times 10^{-11} M$ Aug 3-10:03 AM Aug 3-10:03 AM - 4) What is the [H₃O⁺] and [OH⁻] in 4.2 x 10⁻²M - Sr(OH)₂? 4) What is the $[H_3O^{\dagger}]$ and $[OH^{-}]$ in 4.2 x $10^{-2}M$ $Sr(OH)_2$? $Sr(OH)_2 \longrightarrow Sr^{2+} + 2OH^-$ 4.2 x 10⁻²M 8.4 x 10⁻²M $K_{w} = [H_{3}O^{+}][OH^{-}]$ $1.0 \times 10^{-14} = [H_3O^+](8.4 \times 10^{-2})$ $[H_3O^+] = 1.0 \times 10^{-14} = 1.2 \times 10^{-13}M$ 8.4 × 10⁻² Aug 3-10:06 AM Aug 3-10:06 AM #### Effect of Temperature on Kw $$2H_2O_{(I)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH_{(aq)}$$ This reaction is _____thermic in the forward direction and _____thermic in the reverse direction. If temperature is increased, in what direction will a shift occur? How does this affect $[H_3O^{\dagger}]$ and $[OH^{-}]$? How does this affect the value of K_w? If temperature is decreased, in what direction will a shift occur? How does this affect $[H_3O^{\dagger}]$ & $[OH^{-}]$? How does this affect K_w? Aug 3-10:10 AM #### Effect of Temperature on Kw $$2H_2O_{(I)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH_{(aq)}$$ This reaction is <a>endo thermic in the forward direction and _____ thermic in the reverse direction. If temperature is increased, in what direction will a shift occur? right (endo) How does this affect $[H_3O^{\dagger}]$ and $[OH^{-}]$? they both increase How does this affect the value of K_w? $K_w = [H_3O^+][OH^-]$, so if both $[H_3O^+]$ & $[OH^-]$ increase, K_w increases If temperature is decreased, in what direction will a shift occur? left How does this affect [H₃O⁺] & [OH⁻]? both decrease How does this affect K_w? decreases Aug 3-10:10 AM **Example:** If pure water is heated on the stove, explain the effect on [H₃O⁺], K_w, and explain if it's acidic, basic, or neutral. $$2H_2O_{(I)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH_{(aq)}$$ **Example:** If pure water is heated on the stove, explain the effect on $[H_3O^{\dagger}]$, K_w , and explain if it's acidic, basic, or neutral. $$2H_2O_{(I)} + 59kJ \longrightarrow H_3O_{(aq)}^+ + OH_{(aq)}$$ If the water is heated, the temperature has increased, causing a shift endo, which in this case is in the forward direction. Thus, [H₃O⁺] and [OH⁻] increase, and K_w increases. Since $[H_3O^{\dagger}] = [OH^{-}]$, the water will be neutral. Aug 3-10:16 AM Aug 3-10:16 AM #### **Assignment 7** 1) Calculate the [OH] for solutions with the given [H₃O⁺]. Is each solution acidic, basic, or neutral? a. $$[H_3O^+] = 1.0 \times 10^{-3}M$$ b. $$[H_3O^+] = 2.6 \times 10^{-10}M$$ c. $$[H_3O^+] = 8.7 \times 10^{-7}M$$ #### **Assignment 7** 1) Calculate the [OH] for solutions with the given
$[H_3O^{\dagger}]$. Is each solution acidic, basic, or neutral? $$a. \ [H_3O^+] = 1.0 \ x \ 10^{-3} M \quad \text{a) [OH]} = \frac{1.0 \ x \ 10^{-14}}{1.0 \ x \ 10^{-3}} = 1.0 \ x \ 10^{-11} \text{M}$$ b. $$[H_3O^+] = 2.6 \times 10^{-10}M$$ c. $$[H_3O^+] = 8.7 \times 10^{-7}M$$ b) $$[OH^{-}] = \frac{1.0 \times 10^{-14}}{2.6 \times 10^{-10}} = 3.8 \times 10^{-5} M$$ basic c) [OH] = $$\frac{1.0 \times 10^{-14}}{8.7 \times 10^{-7}}$$ = 1.1 x 10⁻⁸M acidic Aug 3-10:20 AM Aug 3-10:20 AM 2) Calculate the [H₃O⁺] for solutions with the given [OH-]. Is each solution acidic, basic, or neutral? ``` a. [OH^{-}] = 1.0 \times 10^{-2}M ``` b. $$[OH^{-}] = 3.4 \times 10^{-6}M$$ c. $$[OH^{-}] = 9.2 \times 10^{-9} M$$ ``` 2) Calculate the [H₃O⁺] for solutions with the given [OH]. Is each solution acidic, basic, or neutral? a. [OH^{-}] = 1.0 \times 10^{-2} M a) [H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12} M b. [OH^{-}] = 3.4 \times 10^{-6} M c. [OH^{-}] = 9.2 \times 10^{-9}M b) [H_3O^+] = \frac{1.0 \times 10^{-14}}{3.4 \times 10^{-6}} = 2.9 \times 10^{-9}M c) [H_3O^+] = \frac{1.0 \times 10^{-14}}{9.2 \times 10^{-9}} = 1.1 \times 10^{-6}M acidic ``` Aug 3-10:21 AM Aug 3-10:21 AM 3) What is the $[H_3O^{\dagger}]$ and $[OH^{-}]$ in 0.00345M NaOH? Aug 3-10:26 AM ``` 3) What is the [H_3O^{\dagger}] and [OH^{-}] in 0.00345M NaOH? ``` ``` NaOH → Na⁺ + OH⁻ 0.00345M 0.00345M [H_3O^+] = \frac{1.0 \times 10^{-14}}{0.00345} = 2.9 \times 10^{-12}M ``` Aug 3-10:26 AM ``` 4) Calculate the [H₃O⁺] and [OH⁻] in a. 2.5 x 10⁻⁴M HNO₃ b. 5.0M HCl c. 6.00 \times 10^{-3} \text{M Sr}(OH)_2 ``` ``` 4) Calculate the [H₃O⁺] and [OH⁻] in b. 5.0M HCl c. 6.00 \times 10^{-3} \text{M Sr}(\text{OH})_2 \frac{[\text{OH}] = \frac{1.0 \times 10^{-14}}{2.5 \times 10^{-4}} = 4.0 \times 10^{-11} \text{M}}{2.5 \times 10^{-4}} b) HCl + H_2O \longrightarrow H_3O^+ + Cl^- 5.0M [OH^{-}] = 1.0 \times 10^{-14} = 2.0 \times 10^{-15}M c) Sr(OH)_2 \longrightarrow Sr^{2+} + 2OH^- 6.00 x 10⁻³M 1.20 x 10⁻²M [H_3O^+] = \frac{1.0 \times 10^{-14}}{1.20 \times 10^{-2}} = 8.3 \times 10^{-13} M ``` Aug 3-10:32 AM Aug 3-10:32 AM 5) Hebden page 127, numbers 28 & 29 5) Hebden page 127, numbers 28 & 29 answers in the back of Hebden Aug 3-10:33 AM Aug 3-10:33 AM #### Hq (IIX What does pH stand for? pH is an indication of the acidity/basicity of a solution. pH is the negative logarithm of $[H^+]$ or $[H_3O^+]$ in a solution: $-\log[H^+]$ or $-\log[H_3O^+]$ For example, take a solution with $[H_3O^{\dagger}] =$ 1.0 x 10^{-7} M. The log is -7, so negative log (the pH) is -(-7) = What kind of solution has $[H_3O^{\dagger}] = 1.0 \times 10^{-7}M$ Hq (IIX What does pH stand for? 'power of H⁺', meaning the exponent (logarithm) of the H⁺ molarity pH is an indication of the acidity/basicity of a solution. pH is the negative logarithm of $[H^{+}]$ or $[H_{3}O^{+}]$ in a solution: $-log[H^{+}]$ or $-log[H_{3}O^{+}]$ For example, take a solution with $[H_3O^{\dagger}] =$ 1.0×10^{-7} M. The log is -7, so negative log (the pH) is -(-7) = $\frac{7}{}$. What kind of solution has $[H_3O^+] = 1.0 \times 10^{-7}M$ neutral, such as pure water Aug 3-10:38 AM Aug 3-10:38 AM What is the pH of a solution that has $[H_3O^+]$ = 1.0 x 10⁻⁴M, and is the solution acidic, basic, or neutral? What is the pH of a solution that has $[H_3O^+]$ = 1.0 x 10⁻¹¹M, and is the solution acidic, basic, or neutral? What is the pH of a solution that has $[H_3O^+]$ = 1.0 x 10⁻⁴M, and is the solution acidic, basic, or neutral? $_{\text{pH} = -\log(1.0 \text{ x } 10^{-4}) = 4.00}$ solution is acidic since $[H_3O^+] > [OH^-]$ pH = $-\log(1.0 \times 10^{\circ}) = 4.00^{\circ}$ [OH] would equal 1.0 x 10⁻¹⁰M What is the pH of a solution that has $[H_3O^+]$ = 1.0 x 10⁻¹¹M, and is the solution acidic, basic, or neutral? pH = $-\log(1.0 \times 10^{-11}) = 11.00$ solution is basic since $[H_3O^+] \le [OH^-]$ [OH] would equal 1.0 x 10⁻³M Aug 3-10:43 AM Aug 3-10:43 AM The pH scale is generally considered to be from 0 to 14 at 25 degrees C. pH scale: http://www.johnkyrk.com/pH.html pH values can sometimes be below 0 (very solutions) or above 14 (very solutions). Complete the table on the next slide (remember: $K_w = [H_3O^+][OH] = 1.0 \times 10^{-14}$) Aug 3-11:16 AM The pH scale is generally considered to be from 0 to 14 at 25 degrees C. pH scale: http://www.johnkyrk.com/pH.html pH values can sometimes be below 0 (very acidic solutions) or above 14 (very solutions). Complete the table on the next slide (remember: $K_w = [H_3O^+][OH] = 1.0 \times 10^{-14}$) Aug 3-11:16 AM | [H ₃ O ⁺] (M) | 1.0 x 10 |)1 | 1 x10° | 1 | .0-1 | 10-2 | 10 |)-3 | 10-4 | 10-5 | 10-6 | 10-7 | |--------------------------------------|----------|------|--------|------|------|------|------|-----|-------|-------|------|------| | pН | -1 | | 0 | 0 | | 2 | 3 | 3 | 4 | 5 | 6 | 7 | | [OH·] | 1.0 x 10 |)-15 | 10-14 | | | | | | | | | | | acidic, basic,
or neutral? | | | | | | | | | | | | | | [H ₃ O ⁺] (M) | 10-8 | 10 | -9 10 |)-10 | 10 |)-11 | 10-1 | 2 | 10-13 | 10-14 | 10 | -15 | | рН | 8 | 9 | 1 | 0 | : | 11 | 12 | | 13 | 14 | 1 | 5 | | [OH·] | | | | | | | | | | | | | | acidic, basic,
or neutral? | 1 | | | | | | | | | | | | | | | | Aug 3-11:20 AM | [H ₃ O ⁺] (M) | 1.0 x 10 |)1 | 1 | x10º | 1 | 0-1 | 10- | 2 | 10-3 | 10-4 | 10-5 | 1 | .0-6 | 10-7 | |--------------------------------------|------------------|------|-------|------|-------------------|-----|---------------------------------|---|-------------------|-------------------|------------------|----|------|------------------| | pН | -1 | | | 0 | 1 | | 1 2 | | 3 | 4 | 5 | | 6 | 7 | | [OH·] | 1.0 x 10 |)-15 | 10-14 | | 10 ⁻¹³ | | ⁻¹³ 10 ⁻¹ | | 10 ⁻¹¹ | 10 ⁻¹⁰ | 10 ⁻⁹ | 10 |)-8 | 10 ⁻⁷ | | acidic, basic,
or neutral? | Α | | Α | | Α | | Α | | Α | Α | А | | A | N | | [H ₃ O ⁺] (M) | 10-8 | 10 | -9 | 10- | 10 | 10 |)-11 | 1 | 10-12 | 10-13 | 10-14 | L | 10- | 15 | | рН | 8 | 9 | | 10 | | 11 | | | 12 | 13 | 14 | | 15 | 5 | | [OH·] | 10 ⁻⁶ | 10 | -5 | 10-4 | | 10 |)-3 | 1 | 0-2 | 10 ⁻¹ | 10 ⁰ | | 10 | 1 | | acidic, basic,
or neutral? | В | В | , | В | | | В | | В | В | В | | В | Aug 3-11:20 AM Remember that $[H_3O^+]$ and $[OH^-]$ are inversely related (as one goes up, the other goes down). Thus, a high $[H_3O^+]$ in a solution corresponds to a low $[OH^-]$, as their product must always equal the $K_w = 1.0 \times 10^{-14}$ at 25 degrees C. If pH decreases by 1, what happens to $[H_3O^{\dagger}]$? $[OH^{-}]$? If pH increases by 1, what happens to $[H_3O^{\dagger}]$? $[OH^{-}]$? Remember that $[H_3O^{\dagger}]$ and $[OH^{\dagger}]$ are inversely related (as one goes up, the other goes down). Thus, a high $[H_3O^{\dagger}]$ in a solution corresponds to a low $[OH^{\dagger}]$, as their product must always equal the $K_w = 1.0 \times 10^{-14}$ at 25 degrees C. If pH decreases by 1, what happens to $[H_3O^{\dagger}]$? $[OH^{-}]$? $[H_3O^{\dagger}]$ increases by 10 times; [OH] decreases by 10 times If pH increases by 1, what happens to $[H_3O^{\dagger}]$? $[OH^{-}]$? $[H_3O^{\dagger}]$ decreases by 10 times; [OH] increases by 10 times Aug 3-11:20 AM Aug 3-11:20 AM What is the pH of a 1.0 x 10⁻⁶M H₃O⁺ solution? Is the pH of a $4.2 \times 10^{-6} M H_3 O^+$ solution greater than 6 or less than 6? How do you know? pH is defined as -log[H₃O⁺], and can be found using a calculator: How do 'sig figs' work when calculating pH? Aug 3-11:29 AM What is the pH of a 1.0 x 10^{-6} M H₃O⁺ solution? Is the pH of a $4.2 \times 10^{-6} M H_3 O^+$ solution greater than 6 or less than 6? How do you know? $4.2 \times 10^6 M > 1.0 \times 10^6 M$, so more H_3O^+ , so more acidic, therefore the pH must be less than 6 pH is defined as -log[H₃O⁺], and can be found using a calculator: press (-), then log, then 4.2 EXP (-)6, then = pH = 5.38 OR: 4.2 EXP (-)6, then log, then change the sign How do 'sig figs' work when calculating pH? However many sig figs the molarity of $\rm H_3O^+$ has, is how many digits you get AFTER THE DECIMAL for pH Aug 3-11:29 AM Find the pH of each solution below with proper sig figs: | [H ₃ O ⁺](M) | 2.15 x 10 ⁻² | 8 x 10 ⁻⁹ | 9.334 x 10 ⁻⁵ | 5.0 x 10 ⁻¹³ | 3.500 | |-------------------------------------|-------------------------|----------------------|--------------------------|-------------------------|-------| | рН | | | | | | | A, B, or N | | | | | | | | | | | | | Find the pH of each solution below with proper sig figs: | 3 3 | | | | | | |-------------------------------------|-------------------------|----------------------|--------------------------|-------------------------|---------| | [H ₃ O ⁺](M) | 2.15 x 10 ⁻² | 8 x 10 ⁻⁹ | 9.334 x 10 ⁻⁵ | 5.0 x 10 ⁻¹³ | 3.500 | | рН | 1.668 | 8.1 | 4.0299 | 12.30 | -0.5441 | | A, B, or N | Α | В | Α | В | Α | Aug 3-11:36 AM Aug 3-11:36 AM $[H_3O^{\mbox{\tiny +}}]$ is calculated from pH by the following: $[H_3O^+] = 2nd \log (-pH)$ *2nd same as shift or inv on claculator Find [H₃O⁺] for each with proper sig figs: | $[H_3O^+](M)$ | | | | | | |---------------|-------|------|-----|-------|---------| | рН | 7.321 | 4.56 | 1.3 | 13.22 | 15.6257 | | A, B, or N | | | | | | $[H_3O^{\dagger}]$ is calculated from pH by the following: $[H_3O^{\dagger}] = 2nd \log (-pH)$ *2nd same as shift or inv on claculator Find [H₃O⁺] for each with proper sig figs: | [H ₃ O ⁺] (M) | 4.78 x 10 ⁻⁸ | 2.8 x 10 ⁻⁵ | 5 x 10 ⁻² | 6.0 x 10 ⁻¹⁴ | 2.368
x 10 ⁻¹⁶ | |--------------------------------------|-------------------------|------------------------|----------------------|-------------------------|------------------------------| | рН | 7.321 | 4.56 | 1.3 | 13.22 | 15.6257 | | A, B, or N | В | Α | Α | В | В | Aug 3-11:37 AM Aug 3-11:37 AM #### pOH What is pOH? How do you calculate it if you know [OH]? How do you calculate [OH-] if you know the pOH? If $[H_3O^+] = 3.45 \times 10^{-5}M$, find pH, $[OH^-]$, and pOH. Is the
solution A, B, or N? Aug 3-11:45 AM #### pOH What is pOH? 'power of hydroxide' How do you calculate it if you know [OH]? How do you calculate $[OH^-]$ if you know the pOH? $[OH^-] = 2nd \log (-pOH)$ If $[H_3O^+] = 3.45 \times 10^{-5}M$, find pH, $[OH^-]$, and pOH. Is the solution A, B, or N? ``` pH = -\log(3.45 \times 10^{-5}) [OH] = \frac{1.0 \times 10^{-14}}{3.45 \times 10^{-5}} pOH = -\log(2.899 \times 10^{-10}) pH = 4.462 ``` $[OH^{-}] = 2.9 \times 10^{-10} M$ pOH = 9.54 acidic Aug 3-11:45 AM If $[OH^-] = 7.2 \times 10^{-3} M$, find pOH, $[H_3O^+]$, and pH. Is the solution A, B, or N? Using the results of the last two examples, what relationship exists between pH and pOH at 25 degrees C? http://www.wwnorton.com/college/chemistry/gilbert2/tutorials/interface.asp?chapter=chapter_16 &folder=ph_scale Aug 3-11:55 AM If $[OH^-] = 7.2 \times 10^{-3} M$, find pOH, $[H_3O^+]$, and pH. Is the solution A, B, or N? ``` pOH = -\log(7.2 \times 10^{-3}) [H₃O⁺] = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-3}} pH = -\log(1.389 \times 10^{-12}) pOH = 2.14 [H₃O⁺] = 1.4 \times 10^{-12}M pH = 11.86 basic ``` Using the results of the last two examples, what relationship exists between pH and pOH at 25 degrees C? pH + pOH = 14 http://www.wwnorton.com/college/chemistry/gillbert2/tutorials/interface.asp?chapter=chapter_16 &folder=ph_scale Aug 3-11:55 AM Therefore, if pH < 7, then pOH _____, and the solution is _____. If pH > 7, then pOH _____, and the solution is Therefore, if pH < 7, then pOH _____, and the solution is _____. If pH > 7, then pOH _____, and the solution is basic Aug 3-11:59 AM Aug 3-11:59 AM Sep 11-5:06 PM Aug 3-12:01 PM Aug 3-12:01 PM # Assignment 8 1) Find the pH, pOH, and $[OH^{-}]$ if a) $1.0 \times 10^{-5} M H_{3}O^{+}$. - b) 2.65 x 10⁻⁷M H₃O⁺. - c) 6.744 x 10⁻¹²M H₃O⁺. Aug 3-12:04 PM # Assignment 8 - 1) Find the pH, pOH, and [OH] if - a) $1.0 \times 10^{-5} \text{M H}_3\text{O}^+$. - a) pH = 5.00 - b) 2.65 x 10⁻⁷M H₃O⁺. - pOH = 14 5.00 = 9.00 [OH⁻] = 2nd log (-9.00) = 1.0 x 10⁻⁹ M - c) 6.744 x 10⁻¹²M H₃O⁺. - b) pH = $-\log(2.65 \times 10^{-7})$ = 6.577 - = 6.577 pOH = 14 - 6.577 = 7.423 [OH] = 2nd log (-7.423) = 3.77 x 10⁻⁸M - c) pH = -log(6.744 x 10⁻¹²) = 11.1711 pOH = 14 - 11.1711 = 2.8289 - [OH] = 2nd log (-2.8289) = 1.483 x 10⁻³M - 2) Find the $[H_3O^{\dagger}]$, pOH, and [OH] if - a) pH = 2.35 - b) pH = 6.456 - c) pH = 10.76 Aug 3-12:04 PM Aug 3-12:54 PM ``` 2) Find the [H₃O⁺], pOH, and [OH] if a) pOH = 14 - 2.35 = 11.65 a) pH = 2.35 [H_3O^+] = 2nd log (-2.35) b) pH = 6.456 = 4.5 \times 10^{-3} M [OH^{-}] = 2nd log (-11.65) = 2.2 x 10⁻¹²M c) pH = 10.76 b) pOH = 14 - 6.456 = 7.544 c) pOH = 14 - 10.76 = 3.24 [H_3O^+] = 2nd log (-6.456) = 3.50 x 10⁻⁷M [H_3O^+] = 2nd log (-10.76) = 1.7 x 10⁻¹¹M = 3.50 \times 10^{-7} M [OH⁻] = 2nd log (-7.544) = 2.86 x 10⁻⁸M [OH^{-}] = 2nd log (-3.24) = 5.8 x 10⁻⁴M ``` ``` 3) Find the [OH⁻], [H₃O⁺], and pH if ``` - a) pOH = 2.34 - b) pOH = 12.59 - c) pOH = 7.10 Aug 3-12:54 PM Aug 3-12:59 PM ``` 3) Find the [OH^{-}], [H_3O^{+}], and pH if ``` ``` a) pOH = 2.34 a) pH = 14 - 2.34 = 11.66 [H_3O^{\dagger}] = 2nd log (-11.66) = 2.2 x 10⁻¹²M b) pOH = 12.59 [OH^{-}] = 2nd log (-2.34) = 4.6 x 10⁻³M c) pOH = 7.10 b) pH = 14 - 12.59 = 1.41 c) pH = 14 - 7.10 = 6.90 [H_3O^{\dagger}] = 2nd log (-1.41) = 3.9 x 10⁻²M [H_3O^+] = 2nd log (-6.90) = 1.3 x 10⁻⁷M [OH^{-}] = 2nd log (-12.59) = 2.6 x 10⁻¹³M [OH^{-}] = 2nd log (-7.10) = 7.9 x 10⁻⁸M ``` 4) Hebden page 141, numbers 55 & 56 Aug 3-12:59 PM Aug 3-1:07 PM 4) Hebden page 141, numbers 55 & 56 answers in the back of Hebden http://www.quia.com/rd/1975.html?AP_rand=1837719048 pK_w The 'p' of any value is the -log of that value. For example, the pH of $[H_3O^{\dagger}]$ is $-log[H_3O^{\dagger}]$, and the pOH of [OH] is -log[OH]. Therefore, how would you calculate the pK_w at 25 degrees C if K_w = 1.0×10^{-14} ? $$pK_w =$$ How do pH and pOH relate to each other? This is because when you multiply powers in math, the shortcut is to add their exponents! Aug 3-1:07 PM Aug 3-1:04 PM #### pKw http://www.quia.com/rd/1975.html?AP_rand=1837719048 The 'p' of any value is the -log of that value. For example, the pH of $[H_3O^+]$ is -log $[H_3O^+]$, and the pOH of $[OH^-]$ is -log $[OH^-]$. Therefore, how would you calculate the pK_w at 25 degrees C if K_w = 1.0×10^{-14} ? $$pK_w = -logK_w = -log(1.0 \times 10^{-14}) = 14.00$$ How do pH and pOH relate to each other? ``` pH + pOH = 14.00 so pH + pOH = pK_w ``` This is because when you multiply powers in math, the shortcut is to add their exponents! Aug 3-1:04 PM ## Outside the pH scale (below 0 & above 14) What is the pH of 1.00M HCI? Therefore, what would pH be if [HCI] > 1.00M? Very concentrated acidic solutions (solutions that have $[H_3O^+] >$ ____M have pH values less than 0. Very concentrated basic solutions (solutions that have [OH] >___M; $[H_3O^+] <$ ___M) have pH values greater than 14. Aug 3-1:15 PM #### Outside the pH scale (below 0 & above 14) What is the pH of 1.00M HCI? ``` 1.00M = 1.00 \times 10^{0} M, so pH = 0.000 ``` Therefore, what would pH be if [HCI] > 1.00M? pH would be a negative number Very concentrated acidic solutions (solutions that have $[H_3O^+] > \frac{1.0}{}$ M have pH values less than 0. Very concentrated basic solutions (solutions that have $[OH] > \frac{1.0}{}$ M; $[H_3O^+] < \frac{1.0 \times 10^{-14}}{}$ M) have pH values greater than 14. Aug 3-1:15 PM #### Example: Find the pH and pOH of: a) $5.0M HNO_3$ b) 1.5M Sr(OH)₂ Aug 3-1:20 PM #### **Example:** Find the pH and pOH of: a) 5.0M HNO₃ b) $1.5M Sr(OH)_2$ ``` \begin{array}{lll} \text{HNO}_3 + \text{H}_2\text{O} & \rightarrow \text{H}_3\text{O}^+ + \text{NO}_3^- \\ 5.0\text{M} & 5.0\text{M} & 1.5\text{M} & 3.0\text{M} \\ \\ \text{pH} = -\text{log}(5.0) & & \text{pOH} = -\text{log}(3.0) \\ & = -0.70 & & = -0.48 \\ \\ \text{pOH} = 14 - (-0.70) & & \text{pH} = 14 - (-0.8) \\ & = 14.70 & & = 14.48 \\ \end{array} ``` #### **Practice Questions:** - 1) Find the pH of a 0.0020M solution of HNO₃. - 2) Calculate the pH of a 0.010M NaOH solution. - 3) If the pH is decreased from 5 to 2, what happens to the $[H_3O^+]$ and $[OH^-]$? Aug 3-1:20 PM Aug 3-1:25 PM #### **Practice Questions:** 1) Find the pH of a 0.0020M solution of HNO₃. ``` HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^- pH = -log(0.0020) 0.0020M = 2.70 ``` 2) Calculate the pH of a 0.010M NaOH solution. ``` NaOH Na^{+} + OH^{-} pOH = -\log(0.010) 0.010M = 2.00 pH = 14.00 - 2.00 = 12.00 ``` 3) If the pH is decreased from 5 to 2, what happens to the $[H_3O^+]$ and $[OH^-]$? ``` every change in pH by 1 unit = 10 times change in concentration [H_3O^+] increases by 10 x 10 x 10 = 10^3 = 1000 times [OH^-] decreases by 1000 times ``` Aug 3-1:25 PM - 4) If pH is increased from 7.2 to 8.9, what happens to the $[H_3O^+]$? - 5) Calculate the pH of the final solution if 100.0mL of a strong acid with pH = 4.500 is diluted by adding 50.0mL of water. Aug 3-1:30 PM 4) If pH is increased from 7.2 to 8.9, what happens to the $[H_3O^{\dagger}]$? ``` 8.9 - 7.2 = 1.7 [H_3O^+] decreases by 50 times 10^{1.7} = 50 ``` 5) Calculate the pH of the final solution if 100.0mL of a strong acid with pH = 4.500 is diluted by adding 50.0mL of water. ``` \begin{split} & \text{Before dilution:} & & M_i V_i = M_f V_f \\ & [H_3O^+] = 2 n d \log (-4.500) & (3.16 \times 10^{-5}) (0.1000) = M_f (0.1500) \\ & = 3.16 \times 10^{-5} M & [H_3O^+] \text{ after dilution} \\ & = 2.1081 \times 10^{-5} M \end{split} pH = -log(2.1081 \times 10^{-5}) = 4.676 ``` Aug 3-1:30 PM 6) By how many pH units does the pH change if 80.0mL of 0.0200M HCl is diluted to a final volume of 160.0mL? Aug 3-1:38 PM 6) By how many pH units does the pH change if 80.0mL of 0.0200M HCl is diluted to a final volume of 160.0mL? - 7a) Using your acid/base table for assistance, which has a lower pH, a 0.01M solution of HF or a 0.01M solution of CH_3COOH ? Why? - b) Which of the above solutions will conduct better? Why? Aug 3-1:38 PM Aug 4-12:57 PM - 7a) Using your acid/base table for assistance, which has a lower pH, a 0.01M solution of HF or a 0.01M solution of CH₃COOH? Why? - HF is higher on the acid side (left side), therefore it reacts to a greater extent to produce more H_3O^{\dagger} . Thus, 0.01M HF will have a lower pH - b) Which of the above solutions will conduct better? Why? - 0.01M HF. Since it reacts to a greater extent, it creates more ions, and the more ions in solution, the better is conducts. #### Aug 4-12:57 PM #### **Assignment 9** - 1) Hebden page 139, numbers 49deh & 50ef - 2) Calculate the pH, pOH, and [OH] of a 0.00100M solution of HNO₃. - 3) Calculate the pOH, pH, and $[H_3O^{\dagger}]$ of a 2.34 x 10^{-4} M solution of Ca(OH)₂. Aug 4-1:01 PM #### **Assignment 9** - 1) Hebden page 139, numbers 49deh & 50ef answers in the back of Hebden - 2) Calculate the pH, pOH, and [OH] of a 0.00100M solution of HNO₃. 3) Calculate the pOH, pH, and $[H_3O^+]$ of a 2.34 x 10^{-4} M solution of $Ca(OH)_2$. ``` Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH 2.34 \times 10^{-4}M 2.34 \times 10^{-4}M 2.34 \times 10^{-4}M PH = 14 - 3.330 = 10.670 ``` Aug 4-1:01 PM - 4) If the pH is increased from 1 to 6, how do the $[H_3O^{\dagger}]$ and $[OH^{\dagger}]$ change? - 5) If the pH decreases from 9.3 to 6.5, how does $[H_3O^+]$ change? Aug 4-1:13 PM 4) If the pH is increased from 1 to 6, how do the $[H_3O^{\dagger}]$ and $[OH_3]$ change? increase in 5 pH units, meaning a decrease of 10^5 in $[H_3O^+],$ so $[H_3O^+]$ decreases by 100 000 times 5) If the pH decreases from 9.3 to 6.5, how does $[H_3O^{\dagger}]$ change? $10^{9.3\text{-}6.5}$ = $10^{2.8}$ = 631 times increase in [H₃O⁺] 6) What is the pH of the final solution if 35.00mL of a strong acid at pH 3.56 is diluted by adding 100.0mL of water? Aug 4-1:13 PM Aug 4-1:19 PM 6) What is the pH of the final solution if 35.00mL of a strong acid at pH 3.56 is diluted by adding 100.0mL of water? ``` Before dilution: M_1V_1 = M_1V_1 [H_3O^+] = 2nd \log(-3.56) \quad
(2.754 \times 10^{-4})(0.03500) = M_1(0.13500) = 2.754 \times 10^{-4}M \quad [H_3O^+] \text{ after dilution} = 7.1406 \times 10^{-5}M pH = -\log(7.1406 \times 10^{-5}) = 4.15 ``` 7) You have 50.00mL of a 0.00345M solution of HClO₄. How does the pH change if you dilute the solution to a final volume of 175.0mL? Aug 4-1:19 PM Aug 4-1:25 PM 7) You have 50.00mL of a 0.00345M solution of $HClO_4$. How does the pH change if you dilute the solution to a final volume of 175.0mL? ``` \begin{array}{lll} \text{HCIO}_4 & + & \text{H}_2\text{O} & \longrightarrow \text{H}_3\text{O}^{+} & + & \text{CIO}_4^{-} & \text{M}_i\text{V}_i = \text{M}_i\text{V}_i \\ 0.00345\text{M} & 0.00345\text{M} & (0.00345)(0.05000) = \text{M}_f(0.1750) \\ \\ \text{[H_3O}^{+}$] before dilution & & & & & & & \\ & = & 0.00345\text{M} & = & 9.857 \times 10^{-4}\text{M} \\ \\ \text{pH before dilution} & & & & & & & \\ & = & 2.462 & & & & & \\ & = & 3.006 & & & \\ \\ \text{pH change} = & 3.006 - 2.462 = 0.544 \text{ increase} \\ \end{array} ``` 8) Hebden page 139 #53 and page 141 #57 9) You dissolve 0.4g of $Ca(OH)_2$ in 500mL of solution. What is the pH? Aug 4-1:25 PM Aug 4-1:29 PM - 8) Hebden page 139 #53 and page 141 #57 answers in the back of Hebden - 9) You dissolve 0.4g of Ca(OH)₂ in 500mL of solution. What is the pH? Temperature and pH $2H_2O_{(I)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$ At 25 degrees C: $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ so p $K_w = 14.00$ The pH scale is generally thought of from 0-14 because the pK_w is 14. However, this is only the case at 25 degrees C. Why? Aug 4-1:29 PM Aug 4-1:36 PM #### Temperature and pH $2H_2O_{(l)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$ At 25 degrees C: $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ so p $K_w = 14.00$ The pH scale is generally thought of from 0-14 because the pK_w is 14. However, this is only the case at 25 degrees C. Why? K_w at 25 degrees C is 1.0×10^{-14} , so pK_w = 14, and this is what determines the pH scale. K_w changes due to a temperature change, so pK_w does as well and thus the pH scale also changes. If the temperature is increased, what happens to the equilibrium and the resulting K_w ? What will happen to the pH scale? What if the temperature is decreased? Aug 4-1:40 PM Aug 4-1:36 PM If the temperature is increased, what happens to the equilibrium and the resulting K_w? What will happen to the pH scale? increase in temp = shift endo = shift right, therefore both $[H_3O^+]$ and [OH] increase, therefore K_w increases, therefore pK_w decreases, and thus the pH scale shrinks What if the temperature is decreased? decrease in temp = shift exo = shift left, therefore both $[H_3O^\dagger]$ and [OH] decrease, therefore K_w decreases, therefore pK_w increases, therefore the pH scale gets larger Example: An increase in temperature to 50 degrees C results in a K_w of 5.48 x 10⁻¹⁴. Calculate the pH, pOH, [H₃O⁺], and [OH⁻] in pure water. Is the water acidic, basic, or neutral? Aug 4-1:40 PM Aug 4-1:50 PM Example: An increase in temperature to 50 degrees C results in a K_w of 5.48 x 10⁻¹⁴. Calculate the pH, pOH, [H₃O⁺], and [OH⁻] in pure water. Is the water acidic, basic, or neutral? $$pK_w = -log(5.48 \times 10^{-14})$$ = 13.261 pH scale 0 - 13.261 pH = pOH = $\frac{13.261}{2}$ = 6.631 $\frac{1}{2}$ $[H_3O^+] = [OH^-] = 2nd log (-6.630/5)$ = 2.34 x 10⁻⁷M pure water is always neutral as $[H_3O^+] = [OH^-]$ Example: A sample of distilled, pure water has a pH of 7.50. Is the temperature greater than or less than 25 degrees C? Explain. $$2H_2O_{(I)} + 59kJ \longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$$ Aug 4-1:50 PM Aug 4-1:54 PM Example: A sample of distilled, pure water has a pH of 7.50. Is the temperature greater than or less than 25 degrees C? Explain. $$2H_2O_{(I)} \ + \ 59kJ {\ \Longleftrightarrow \ } H_3O^+_{\ (aq)} \ + \ OH^-_{\ (aq)}$$ pure water is neutral, so pH = pOH, therefore $pK_w = 7.50 \times 2 = 15.00$ so, $K_w = 2nd \log (-15.00) = 1.0 \times 10^{-15}$ 1.0×10^{-15} is less than 1.0 x 10⁻¹⁴ so K_w has decreased, therefore $[H_3O^+]$ and [OH] both decreased, thus a shift left, meaning a shift exo, so the temperature must have decreased. Therefore, the temperature is LESS THAN 25 degrees C. Aug 4-1:54 PM #### **Assignment 10** - 1) Hebden page 139, #51, 52 - 2) Water at a certain temperature has a K_w of 4.4×10^{-15} . - a) Is the water at a temperature above or below 25 degrees C? - b) What is the pK_w? - c) What would the pH scale be at this temperature? - d) Find the $[H_3O^{\dagger}]$ and $[OH^{\dagger}]$ - e) Find the pH and pOH. - f) Is water at this temperature acidic, basic, or neutral? Aug 4-2:00 PM #### **Assignment 10** - 1) Hebden page 139, #51, 52 - answers in the back of Hebden - 2) Water at a certain temperature has a K_w of 4.4×10^{-15} . - a) Is the water at a temperature above or below - 25 degrees C? below 25 degrees C, since 4.4 x 10⁻¹⁵ < 1.0 x 10⁻¹⁴ - b) What is the pK_w? $pK_w = -log(4.4 \times 10^{-15}) = 14.36$ - c) What would the pH scale be at this temperature? 0-14.36 - d) Find the $[H_3O^+]$ and $[OH^-]\sqrt{4.4 \times 10^{-15}} = 6.6 \times 10^{-8}M$ - e) Find the pH and pOH. 14.36 divided by 2 = 7.18 - f) Is water at this temperature acidic, basic, or neutral? Aug 4-2:00 PM #### XIII) Mixtures of Strong Acids and Bases Mixing an acid solution with a basic solution produces a solution that can be ______, _____, or _____ depending on the moles of acid compared to the moles of base mixed. H_3O^+ ions react with OH^- ions to make $2H_2O$ molecules, known as neutralization. But if there are more of one ion than the other, the resulting solution will not be neutral. Aug 4-2:10 PM #### XIII) Mixtures of Strong Acids and Bases Mixing an acid solution with a basic solution produces a solution that can be <u>acidic</u>, <u>basic</u>, or <u>neutral</u> depending on the moles of acid compared to the moles of base mixed. H₃O⁺ ions react with OH⁻ ions to make 2H₂O molecules, known as neutralization. But if there are more of one ion than the other, the resulting solution will not be neutral. Example: Calculate the pH of a solution obtained by adding 50.0mL of 0.10M HCl to 80.0mL of 0.15M NaOH. Aug 4-2:10 PM Aug 4-2:13 PM ``` Example: Calculate the pH of a solution obtained by adding 50.0mL of 0.10M HCl to 80.0mL of 0.15M NaOH. HCl + H₂O \longrightarrow H₃O⁺ + Cl⁻ 0.10M 0.10M 0.15M 0.15M 0.15M mol H₃O⁺ = (0.10)(0.0500) = 0.0050 mol OH⁻ = (0.15)(0.0800) = 0.012 excess OH = 0.012 \frac{-0.0050}{0.007} [OH⁻] = \frac{0.007}{0.1300} = 0.053846M pOH = -log(0.053846) = 1.2688 pH = 12.7 ``` Example: Calculate the pH of a solution obtained by adding 1.00g of Ca(OH)₂ to 650.0mL of 0.800M HCl. Aug 4-2:13 PM Aug 4-2:21 PM Example: What mass of NaOH would have to be added to 500.0mL of 0.100M HCl in order to produce a solution with a pH of 3.200? ``` Aug 4-2:21 PM Aug 4-2:31 PM ``` Example: What mass of NaOH would have to be added to 500.0mL of 0.100M HCl in order to produce a solution with a pH of 3.200. before NaOH added: $HCl + H_2O \longrightarrow H_3O^+ + Cl^-$ 0.100M 0.100M mol $H_3O^+ = (0.100)(0.5000) = 0.0500$ after NaOH added, at pH 3.200: $[H_3O^+] = 2nd \log(-3.200) = \frac{6.3096}{0.3096} \times 10^{-4}M$ mol $H_3O^+ = (\frac{6.3096}{0.3096} \times 10^{-4})(0.5000) = \frac{3.15}{0.0496} \times 10^{-4}$ amount of H_3O^+ lost when NaOH added: $0.0500 - \frac{3.15}{0.0496} \times 10^{-4}$ amount of NaOH added: 0.049685mol amount of NaOH added: 0.049685mol mass NaOH added = 0.049685mol MaOH Example: How many moles of HCI must be added to 40.0mL of 0.180M NaOH to produce a solution having a pH of 12.500? (Assume that there is no change in volume when the HCI is added) Aug 4-2:31 PM Aug 4-2:39 PM Example: How many moles of HCl must be added to 40.0mL of 0.180M NaOH to produce a solution having a pH of 12.500? (Assume that there is no change in volume when the HCl is added) ``` before HCl added: NaOH \longrightarrow Na⁺ + OH⁻ 0.180M 0.180M mol OH⁻ = (0.180)(0.0400) = 0.00720 after HCl added, at pH 12.500: pOH = 14 - 12.500 = 1.500 [OH] = 2nd log(-1.500) = 3.1623 x 10⁻²M mol OH⁻ = (3.1623 x 10⁻²)(0.0400) = 1.2649 x 10⁻³ amount of OH⁻ lost when HCl added: 0.00720 - 1.2649 x 10⁻³ = 0.005935 mol amount of HCl added: 0.005935mol = 0.00594 moles ``` Aug 4-2:39 PM ### Assignment 11 Hebden page 143 #58, 60, 62, 65, 67 Aug 4-2:46 PM #### Assignment 11 Hebden page 143 #58, 60, 62, 65, 67 answers in the back of Hebden # XIV) Titrations A **titration** is a laboratory technique that is most often used to find the concentration (molarity) of a solution. Acid/base titrations are a common type of titration in which a base is used to find an unknown acid concentration, or *visa versa*. Suppose you are cleaning up the lab and you find a large container labeled 'hydrochloric acid', but the concentration is not given. A **titration** can be done to find the unknown concentration. Aug 4-2:46 PM Aug 5-10:20 AM Titration is a process (procedure and calculations) for determining the concentration of a substance accurately and precisely using a measurable volume of a standardized solution. A **standardized solution** is simply a reactant of known concentration. The standardized solution (or **titrant**) used to find the concentration of hydrochloric acid would be a strong base, such as NaOH solution. The volume of NaOH is added to the acid solution would be measured using a skinny tube called a **buret**. http://www.chem-ilp.net/labTechniques/TitrationAnimation.htm Aug 5-10:23 AM Aug 5-10:26 AM Aug 5-10:26 AM The flask contains a measured volume of the solution of unknown concentration, in this case 10.00mL of $HCl_{(aq)}$, and the buret contains a standardized base, in this case 0.10M NaOH $_{(aq)}$. The standardized base is added from the buret to the flask. The OH $^-$ from the buret reacts with the H_3O^+ from the flask to produce water. This continues until the **equivalence
point** is reached, the point at which http://www.wiley.com/college/chem/brady184764/resources/ch04/index_ch4_bysect.html Aug 5-10:27 AM The flask contains a measured volume of the solution of unknown concentration, in this case 10.00mL of $HCl_{(aq)}$, and the buret contains a standardized base, in this case 0.10M NaOH_(aq). The standardized base is added from the buret to the flask. The OH⁻ from the buret reacts with the H_3O^+ from the flask to produce water. This continues until the **equivalence point** is reached, the point at which moles of H_3O^+ = moles of OH^- (moles acid = moles base) At this point, what is in the flask? http://preparatorychemistry.com/Bishop_Solubility_frames.htm For a strong acid/strong base titration, such as the example we are investigating, the pH at the equivalence point is Aug 5-10:27 AM Aug 5-10:30 AM At this point, what is in the flask? For a strong acid/strong base titration, such as the example we are investigating, the pH at the equivalence point is _____. How do you know when the equivalence point has been reached in an acid/base titration? An **indicator** is used to visually determine when the equivalence point has been reached in an acid/base titration. The indicator changes colour at or very near the equivalence point, signaling an end to the titration. When an indicator changes colour, it's called the **endpoint**, or **transition point**, and this is what signals that the **equivalence point** (neutralization) has been reached. The chemistry of indicators will be studied in the Acid/Base II unit. Aug 5-10:30 AM Aug 5-10:34 AM Since, at the equivalence point, moles $OH^- = \text{moles H}_3O^+$, if we can calculate the moles of OH that vacated the buret, it will be equal to the moles of H_3O^+ that were originally in the flask (since H_3O^+ and OH^- react one to one). The [NaOH] = 0.10M, and we kept track of the volume of NaOH that vacated the buret (using the scale on the buret), therefore we can find the moles of OH that went into the flask. If we stop the titration at the equivalence point, the moles of OH that went into the flask will be equal to the moles of H_3O^+ in the flask. Since we know the original volume of H_3O^+ solution in the **flask**, we can calculate the unknown [HCI] on the next page: Aug 5-10:36 AM ``` Suppose 12.63mL of NaOH is used to reach the endpoint NaOH \longrightarrow Na^+ + OH 0.10M 0.10M 0.10M 0.10M mol OH^- used = (0.10M)(0.01263L) = 1.263 \times 10^{-3}mol at equivalence point, mol OH^- = mol H₃O^+ so mol H₃O^+ originally in flask = 1.263 \times 10^{-3} the volume of HCl in the flask was 10.00mL = 0.01000L HCl + H₂O \longrightarrow H₃O^+ + Cl^- 1.263 \times 10^{-3}mol \longrightarrow 10\times 10 ``` Aug 5-10:41 AM #### **Practice Questions:** 1) A 10.00mL sample of an unknown concentration of LiOH_(aq) is titrated using 23.62mL of 0.150M HNO₃. Determine [LiOH]. Aug 5-10:46 AM #### **Practice Questions:** 1) A 10.00mL sample of an unknown concentration of $LiOH_{(aq)}$ is titrated using 23.62mL of 0.150M HNO₃. Determine [LiOH]. ``` \begin{array}{lll} \text{HNO}_3 & + & \text{H}_2\text{O} & \longrightarrow \text{H}_3\text{O}^+ & + & \text{NO}_3^- \\ 0.150\text{M} & & 0.150\text{M} & \end{array} \text{mol H}_3\text{O}^+ \text{ used} = (0.150\text{M})(0.02362) = 0.003543\text{mol} \text{mol CliOH in flask} = 0.003543\text{mol} \text{mol LiOH in flask} = 0.003543\text{mol} \text{[LiOH]} = \underbrace{0.003543\text{mol}}_{0.01000\text{L}} = 0.354\text{M} ``` Aug 5-10:46 AM ``` 2) 37.86mL of 0.250M NaOH was required to neutralize a 20.0mL sample of HF. Calculate the ``` [HF]. *Even though HF is a weak acid and in water it will only dissociate under 5%, in the presence of a strong base such as NaOH. it will react 100%. ``` 2) 37.86mL of 0.250M NaOH was required to neutralize a 20.0mL sample of HF. Calculate the [HF]. *Even though HF is a weak acid and in water it will only dissociate under 5%, in the presence of a strong base such as NaOH, it will react 100%. NaOH \longrightarrow Na^+ + OH 0.250M 0.250M mol OH^- used = (0.250M)(0.03786L) = 9.465 x 10^-3 mol at equivalence point, mol OH^- = mol H₃O^+ so mol H₃O^+ originally in flask = 9.465 x 10^-3 mol HF in flask = 9.465 x 10^-3 therefore, [HF] = \frac{9.465}{0.0200L} x 10^-3 mol = 0.473M \frac{9.465}{0.0200L} = 0.473M ``` Aug 5-11:00 AM Aug 5-11:00 AM 3) A 15.0mL sample of unknown $[Sr(OH)_2]$ was titrated using 18.56mL of 0.350M HNO₃. Find $[Sr(OH)_2]$. 3) A 15.0mL sample of unknown [Sr(OH)₂] was titrated using 18.56mL of 0.350M HNO₃. Find [Sr(OH)₂]. ``` \begin{array}{l} \text{HNO}_3 \ + \ \text{H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+ \ + \ \text{NO}_3^- \\ 0.350\text{M} \ & 0.350\text{M} \ & 0.350\text{M} \end{array} \text{mol H}_3\text{O}^+ \text{ used} = (0.350\text{M})(0.01856) = 0.00\underline{649}6 \\ \text{mol OH}^- \text{ originally in flask} = 0.00\underline{649}6 \quad \text{Sr(OH)}_2 \longrightarrow \text{Sr}^{2+} \ + \ 2\text{OH}^- \\ 0.00\underline{3248} \quad & 0.00\underline{649}6 \\ \text{mol Sr(OH)}_2 \text{ in flask} = \underline{0.00\underline{649}6\text{mol}} = 0.00\underline{3248} \\ \text{[Sr(OH)}_2] = \underline{0.003\underline{248}\text{mol}} \quad = 0.217\text{M} \\ \hline \end{array} ``` *Any stoich you do BEFORE the equivalence point step is a multiply. Any stoich you do AFTER the equivalence point step (such as in this example) is a divide. Aug 5-11:06 AM Aug 5-11:06 AM 4) 50.78mL of 0.020M Ba(OH) $_2$ was required to neutralize a 30.0mL sample of H $_2$ SO $_4$. Find [H $_2$ SO $_4$]. 4) 50.78mL of 0.020M Ba(OH) $_2$ was required to neutralize a 30.0mL sample of H $_2$ SO $_4$. Find [H $_2$ SO $_4$]. ``` Ba(OH)_{2} \longrightarrow Ba^{2+} + 2OH 0.020M \qquad 0.040M mol OH^{-} used = (0.040M)(0.05078L) = 0.00203 at equivalence point, mol OH^{-} = mol H₃O⁺ so mol H₃O⁺ originally in flask = 0.00203 H_{2}SO_{4} \longrightarrow 2H^{+} + SO_{4}^{2-} 0.001016 \qquad 0.00203 mol H₂SO₄ in flask = 0.001016 therefore, [H₂SO₄] = 0.001016 = 0.034M 0.0300L ``` Aug 5-11:12 AM #### Aug 5-11:12 AM #### **Assignment 12** 1) Find the concentration of an HCl solution if 25.00mL is titrated with 28.46mL of a 0.105M standardized solution of NaOH. ### Assignment 12 1) Find the concentration of an HCl solution if 25.00mL is titrated with 28.46mL of a 0.105M standardized solution of NaOH. ``` NaOH \longrightarrow Na^+ + OH 0.105M 0.105M mol OH^- used = (0.105M)(0.02846L) = 0.002988mol at equivalence point, mol OH^- = mol H₃O^+ so mol H₃O^+ originally in flask = 0.002988mol mol HCl in flask = 0.002988mol therefore, [HCl] = 0.002988mol = 0.120M 0.02500L ``` Aug 5-11:17 AM 2) You titrated a 30.0mL solution of HNO_3 with 23.75mL of a 0.25M standardized solution of KOH. What is the [HNO_3]? 2) You titrated a 30.0 mL solution of HNO_3 with 23.75 mL of a 0.25 M standardized solution of KOH. What is the [HNO₃]? ``` KOH \longrightarrow K⁺ + OH 0.25M 0.25M mol OH used = (0.25M)(0.02375L) = 0.0059375 at equivalence point, mol OH = mol H₃O⁺ so mol H₃O⁺ originally in flask = 0.0059375 mol HNO₃ in flask = 0.0059375 therefore, [HNO₃] = 0.0059375mol = 0.20M 0.0300L ``` Aug 5-11:21 AM Aug 5-11:21 AM 3) A 35.00mL unknown solution of LiOH is titrated with 17.67mL of 0.200M HI. What is the [LiOH]? 3) A 35.00mL unknown solution of LiOH is titrated with 17.67mL of 0.200M HI. What is the [LiOH]? ``` HI + H_2O \longrightarrow H_3O^+ + I^- 0.200M 0.200M mol H_3O^+ used = (0.200M)(0.01767) = 0.003534mol mol OH originally in flask = 0.003534mol mol LiOH in flask = 0.003534mol [LiOH] = 0.003534mol = 0.101M ``` Aug 5-11:25 AM Aug 5-11:25 AM 4) A 24.00mL sample of H_2SO_4 is titrated with 32.43mL of 0.150M NaOH solution. Find $[H_2SO_4]$. 4) A 24.00mL sample of H_2SO_4 is titrated with 32.43mL of 0.150M NaOH solution. Find $[H_2SO_4]$. ``` NaOH \longrightarrow Na⁺ + OH 0.150M 0.150M mol OH⁻ used = (0.150M)(0.03243L) = 0.0048645 at equivalence point, mol OH⁻ = mol H₃O⁺ so mol H₃O⁺ originally in flask = 0.0048645 H₂SO₄ \longrightarrow 2H⁺ + SO₄²⁻ 0.002432 0.0048645 mol H₂SO₄ in flask = 0.002432 therefore, [H₂SO₄] = 0.002432 = 0.101M ``` Aug 5-11:29 AM Aug 5-11:29 AM 5) A 40.00mL sample of $Ca(OH)_2$ is titrated with 16.55mL of 0.100M HCl. Find $[Ca(OH)_2]$. 5) A 40.00mL sample of $Ca(OH)_2$ is titrated with 16.55mL of 0.100M HCl. Find $[Ca(OH)_2]$. ``` HCI + H_2O \longrightarrow H_3O^+ + CI 0.100M 0.100M mol H_3O^+ used = (0.100M)(0.01655L) = 0.001655mol at equivalence point, mol OH⁻ = mol H_3O^+ so mol OH⁻ originally in flask = 0.001655 Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH^- 0.0008275 0.001655 mol Ca(OH)_2 in flask = 0.0008275 therefore, [Ca(OH)_2] = 0.0008275 = 0.0207M ``` Aug 5-11:34 AM Aug 5-11:34 AM 6) A 20.00mL sample of H_3PO_4 is titrated with 25.76mL of 0.100M Ba(OH)₂ solution. Find $[H_3PO_4]$. 6) A 20.00mL sample of H_3PO_4 is titrated with 25.76mL of 0.100M Ba(OH)₂ solution. Find $[H_3PO_4]$. ``` Ba(OH)_2 \longrightarrow Ba^{2^+} + 2OH \\ 0.100M \qquad 0.200M mol OH^- used = (0.200M)(0.02576L) = 0.005152 at equivalence point, mol OH^- = mol H_3O^+ so mol H_3O^+ originally in flask = 0.005152 H_3PO_4 \longrightarrow 3H^+ + PO_4^{3^-} 0.0017173 0.005152 mol H_3PO_4 in flask = 0.0017173 therefore, [H_3PO_4] = 0.0017173 = 0.0859M 0.02000L ``` Aug 5-11:41 AM Aug 5-11:41 AM http://auth.mhhe.com/physsci/chemistry/animations/chang_7e_esp/crm3s5_5.swf #### **Making Standardized Solutions** How could you make 1.0L of a 0.50M solution of NaOH in the lab? NaOH originates as solid white pellets. http://auth.mhhe.com/physsci/chemistry/animations/chang_7e_esp/crm3s5_5.swf Making Standardized Solutions How could you make 1.0L of a 0.50M solution of NaOH in the lab? NaOH originates as solid white pellets. moles NaOH = (0.50M)(1.0L) = 0.50 moles mass NaOH = <u>0.50mol</u> | <u>40.0g</u> = <u>20g</u> NaOH | 1mol Weigh out 20g NaOH and put it in a 1L volumetric flask. Fill halfway, swirl to dissolve NaOH, then fill to the line. Aug 6-2:29 PM Aug 6-2:29 PM
This method, though sound for making many types of solutions, would actually produce an NaOH solution that is slightly less than 0.50M (probably about 0.48M). This is because NaOH pellets actually absorb water, and so the mass of NaOH you measure is not all due to NaOH; some is due to water absorbed onto the pellets. This problem is the case for many acids and bases, which makes it very hard to create an accurate standardized solution from scratch. These acids and bases are hygroscopic, meaning they absorb water. There are a few acids and bases that are non-hygroscopic, meaning they are pure and dry acids or bases and can be used to make solutions with accurate concentrations. Non-hygroscopic acids and bases are known as primary standards, and are used to make standardized solutions. Examples: Primary Standard Base: sodium carbonate (Na_2CO_3) Primary Standard Acids: potassium hydrogen phthalate oxalic acid ($H_2C_2O_4$) Aug 6-2:32 PM Aug 6-2:35 PM Once a primary standard of known concentration is accurately prepared in the lab, it can be used to **standardize** any other acid or base solution by titration. For example, oxalic acid is a primary standard acid, and once an accurate standardized solution of it is prepared (using your method from the top of the page), it can be used to standardize any basic solution by titration. Then, that same basic solution that is now standardized can be used to titrate an unknown concentration of any acid, thereby standardizing that acid solution, and so on. #### Calculating Unknown Volume by Titration What volume of 0.0350M Ba(OH)₂ will be required to neutralize 50.0mL of 0.0275M HCI? Aug 6-2:39 PM Aug 6-2:42 PM #### Calculating Unknown Volume by Titration What volume of 0.0350M Ba(OH)₂ will be required to neutralize 50.0mL of 0.0275M HCI? ``` HCI + H₂O \longrightarrow H₃O⁺ + CI 0.0275M mol H₃O⁺ = (0.0275)(0.0500) = 0.00<u>137</u>5 mol OH⁻ used = 0.00<u>137</u>5 Ba(OH)₂ \longrightarrow Ba²⁺ + 2OH 6.875 x 10⁻⁴mol 0.00<u>137</u>5mol mol Ba(OH)₂ = 6.875 x 10⁻⁴ volume Ba(OH)₂ used = 6.875 x 10⁻⁴mol = 0.0196L or 19.6mL 0.0350M ``` #### **Assignment 13** Hebden page 158 #96, 97, 106 & page 165 #122 Aug 6-2:42 PM Aug 6-2:49 PM #### **Assignment 13** Hebden page 158 #96, 97, 106 & page 165 #122 answers in the back of Hebden http://dwb4.unl.edu/chemAnime/PH1D/PH1D.html Aug 6-2:49 PM Aug 9-2:57 PM #### **Helpful Equations - A Summary** 1) Strong acid in water: 100% dissociation $HNO_3 + H_2O \xrightarrow{} H_3O^{\dagger} + NO_3^{}$.10M .10M .10M pH = -log(.10) = 1.00 H₂SO₄ in water: first proton is strong: $H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$.10M .10M .10M second proton is weak: $HSO_4^- + H_2O \longrightarrow H_3O^+ + SO_4^{2-}$.10M <.10M <.10M 2) Weak acid in water: not 100% dissociation $H_3PO_4 + H_2O \longrightarrow H_3O^+ + H_2PO_4^-$.10M 0.0279M 0.0279M pH = -log(0.0279) = 1.56 3) Strong base (hydroxide base) in water: 100% dissociation (water not in reaction; just a dissociation) $$Sr(OH)_2 \longrightarrow Sr^{2+} + 2OH^{-}$$.10M .10M .20M $pOH = -log(.20) = 0.70$ $pH = 13.30$ Aug 6-2:53 PM Aug 6-2:56 PM 5) ANY reaction that involves a STRONG acid or base goes to 100% completion. So a weak acid with a strong base is 100% due to the strong base. A strong acid with a weak base is 100% due to the strong acid. Ex: $H_3PO_4 + 3NaOH \longrightarrow 3H_2O + Na_3PO_4$ weak strong The OH ions take all three protons off of each H₃PO₄ molecule, such as in a titration. If H₃PO₄ was merely in water, only one proton would come off at less than 100% like #2 earlier. Aug 6-2:59 PM Aug 6-3:01 PM 6) Weak acid and weak base: NH₄⁺ + SO₄²⁻ →NH₃ + HSO₄ -side with weaker acid is favoured http://www.media.pearson.com.au/schools/cw/au_sch_derry_ibesl_1/int/aqueous/tutor/f5/1501.html Aug 6-3:04 PM