Chemistry 12

Electrochemical and Electrolytic Cells—Summary

In BOTH Cells:	
Losing	Gaining
Electrons	Electrons
Oxidation at the	Reduction at the
Anode	Cathode
Electrochemical Cells	Electrolytic Cells
Lead Copper 1.0 M Pb(NO ₃) ₂ 1.0 M Cu(NO ₃) ₂	
Higher Half-Rx. on Table Is the Cathode	Anode is + Cathode is –
SPONTANEOUS E ^o is Positive +	NON-SPONTANEOUS E ^o is Negative -
<u>At the Cathode</u> : <i>Reduction</i> of the Cation in the beaker.	<u>At the Cathode</u> : <u>Reduction of Cation in the Electrolyte</u>
Eg. $Cu^{2+} + 2e^- \rightarrow Cu$	Reduction of Cation in the Electrolyte Eg. $Cu^{2+} + 2e^{-} \rightarrow Cu$ or
Lg. Cu + 2c / Cu	Reduction of Water: $H_2O + 2e^- \rightarrow H_2 + 2OH^-$
At the Anode:	At the Anode:
Oxidation of the Metal Anode Electrode	Oxidation of the Anion in Solution:
Eg. Pb \rightarrow Pb ²⁺ + 2e ⁻	Eg. $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$ or
	Oxidation of Water:
	$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$ or Oxidation of the Metal Anode Electrode:
	Eg. Cu \rightarrow Cu ²⁺ + 2e ⁻
	(whichever has the <i>highest oxidation</i>
	<i>potential</i> ie. lowest on the right side of table)
Electrons go from $A \rightarrow C$ in the wire	External power supply pushes e 's on to the
	Cathode, making it – and takes e 's from the
	Anode making it +
Cations move toward \rightarrow Cathode	Cations(+) attracted to the – Cathode where
Anions move toward \rightarrow Anode	they (or water) are <i>reduced</i> .
	Anions(-) attracted to the + Anode, where
In the Salt Bridge	they, water or the anode is oxidized
	Applications include: Electrolysis to
Applications include: Automobile (Pb/Acid)	decompose compounds into elements,
Battery, Zn/C (Dry) Cells, Alkaline Cells, Fuel Cells	Downs Cell, Electrorefining, Electroplating, Electrowinning (eg. Production of Al)
	Licentowinning (eg. 1 locuetion of Al)