Jandary 2000 - Chemistry 12 Provincial Exam
 PART A: MULTIPLE CHOICE

Value: 48 marks
Suggested Time: 70 minutes
INSTRUCTIONS: For each question, select the best answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer.

1. Which of the following is most likely to have the greatest reaction rate at room temperature?
A. $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
B. $2 \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}{ }_{(a q)}^{2-} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4(s)}$
C. $\mathrm{Pb}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{PbCl}_{2(a q)}+\mathrm{H}_{2(g)}$
D. $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$
2. Consider the following reaction involving 1.0 g of powdered zinc:

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{ZnCl}_{2(a q)}+\mathrm{H}_{2(g)}
$$

Trial	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Concentration of HCl
1	40	3.0
2	20	3.0
3	40	6.0

The rates, in order of fastest to slowest, are
A. $1,2,3$
B. 2, 1, 3
C. $3,1,2$
D. $3,2,1$
3. Activation energy can be described as the
A. energy of motion.
B. energy of the activated complex.
C. energy difference between the reactants and the products.
D. energy difference between the reactants and the activated complex.
4. Consider the following potential energy diagram for a reversible reaction:

Which of the following describes the system above?

	Reaction	Activation Energy (kJ)
A.	reverse	10
(HJ)		
B.	reverse	10
C.	forward	30
D.	forward	20
C.		-30

5. Increasing the temperature of a reaction increases the reaction rate by

I.	increasing frequency of collisions
II.	increasing the kinetic energy of collision
III.	decreasing the potential energy of collision

A. I only.
B. I and II only.
C. II and III only.
D. I, II and III.
6. What effect does a catalyst have on a reaction?
A. It changes the $\Delta \mathrm{H}$ of a reaction.
B. It increases the kinetic energy of the reactants.
C. It decreases the potential energy of the products.
D. It provides a reaction mechanism with a lower activation energy.
7. Consider the following equilibrium:

$$
\mathrm{N}_{2(g)}+2 \mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

Equal moles of N_{2} and O_{2} are added, under certain conditions, to a closed container. Which of the following describes the changes in the reverse reaction which occur as the system proceeds toward equilibrium?
A.

Rate of Reverse Reaction	$\left[\mathrm{NO}_{2}\right]$
increases	increases
decreases	increases
increases	decreases
decreases	decreases

8. A chemical equilibrium is described as "dynamic" because
A. maximum randomness has been achieved.
B. the pressure and temperature do not change.
C. both reactants and products continue to form.
D. the concentrations of chemical species remain constant.
9. Which of the following reactions results in an entropy increase?
A. $2 \mathrm{C}_{(s)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{(g)}$
B. $\mathrm{N}_{2(g)}+2 \mathrm{H}_{2(g)} \rightarrow \mathrm{N}_{2} \mathrm{H}_{4(\ell)}$
C. $2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{SO}_{3(g)}$
D. $\mathrm{Ag}^{+}{ }_{(a q)}+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{AgCl}_{(s)}$
10. Consider the following equilibrium:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\text {heat }
$$

A stress was applied at time t_{1} and the data was plotted on the following graph:

The stress that was imposed at time t_{1} is the result of
A. the addition of HCl .
B. decreasing the temperature.
C. the addition of $\mathrm{NaCH}_{3} \mathrm{COO}$.
D. increasing the volume of the container.
11. Consider the following potential energy diagram for an equilibrium system:

Progress of the reaction

When the temperature of the system is increased, the equilibrium shifts to the
A. left and the $\mathrm{K}_{e q}$ increases.
B. left and the $\mathrm{K}_{e q}$ decreases.
C. right and the $\mathrm{K}_{e q}$ increases.
D. right and the $\mathrm{K}_{e q}$ decreases.
12. What is the $\mathrm{K}_{e q}$ expression for the following equilibrium?

$$
3 \mathrm{Fe}_{(s)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)} \stackrel{\mathrm{Fe}_{3} \mathrm{O}_{4(s)}+4 \mathrm{H}_{2(g)}}{ }
$$

A. $\mathrm{K}_{e q}=\left[\mathrm{H}_{2}\right]^{4}$
B. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
C. $\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}$
D. $\mathrm{K}_{e q}=\frac{\left[\mathrm{Fe}_{3} \mathrm{O}_{4} \mathrm{TH}_{2}\right]^{4}}{[\mathrm{Fe}]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}$
13. Consider the following equilibrium:

$$
2 \mathrm{O}_{3(g)} \rightleftarrows 3 \mathrm{O}_{2(g)} \quad \mathrm{K}_{e q}=65
$$

Initially, 0.10 mole of O_{3} and 0.10 mole of O_{2} are placed in a 1.0 L container. Which of the following describes the changes in concentrations as the reaction proceeds toward equilibrium?

14. Which of the following does not define solubility?
A. the concentration of solute in a saturated solution
B. the moles of solute dissolved in a given volume of solution
C. the maximum mass of solute that can dissolve in a given volume of solution
D. the minimum moles of solute needed to produce one litre of a saturated solution
15. The ion concentrations in $0.25 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are

	$\left[\mathrm{Al}^{3+}\right]$	$\left[\mathrm{SO}_{4}{ }^{2-}\right]$
	0.25 M	0.25 M
B.	0.50 M	0.75 M
C.	0.75 M	0.50 M
D.	0.10 M	0.15 M

16. Which of the following will not produce a precipitate when equal volumes of 0.20 M solutions are combined?
A. KOH and CaCl_{2}
B. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$
C. $\mathrm{Sr}(\mathrm{OH})_{2}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
17. What is observed when $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to a saturated solution of CaSO_{4} ?
A. the pH increases
B. the $\left[\mathrm{Ca}^{2+}\right]$ increases
C. bubbles of H_{2} are given off
D. additional CaSO_{4} precipitates
18. The solubility of $\mathrm{CdS}=2.8 \times 10^{-14}$. The value of $\mathrm{K}_{s p}$ is
A. 7.8×10^{-28}
B. 2.8×10^{-14}
C. 5.6×10^{-14}
D. 1.7×10^{-7}
19. How many moles of solute are dissolved in 200.0 mL of a saturated solution of FeS ?
A. 1.2×10^{-19}
B. 6.0×10^{-19}
C. 1.5×10^{-10}
D. 7.7×10^{-10}
20. Consider the following 10.0 mL solutions:

Equal moles of AgNO_{3} are added to each solution. It is observed that a precipitate forms in all but one solution. Which solution does not form a precipitate?
A. Cl^{-}
B. Br^{-}
C. $\mathrm{IO}_{3}{ }^{-}$
D. $\mathrm{BrO}_{3}{ }^{-}$
21. Which of the following could dissolve a precipitate of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ in a saturated solution of $\mathrm{CaC}_{2} \mathrm{O}_{4}$?
A. NaOH
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}$
C. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
22. Which of the following is a general property of bases?
A. taste sour
B. turn litmus red
C. conduct electric current in solution
D. concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$is greater than concentration of OH^{-}
23. Water will act as an acid with which of the following?

I.	$\mathrm{H}_{2} \mathrm{CO}_{3}$
II.	$\mathrm{HCO}_{3}{ }^{-}$
III.	$\mathrm{CO}_{3}{ }^{2-}$

A. I only.
B. III only.
C. I and II only.
D. II and III only.
24. Which of the following 1.0 M solutions will have the greatest electrical conductivity?
A. HI
B. $\mathrm{H}_{2} \mathrm{~S}$
C. HCN
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
25. An acid is added to water and a new equilibrium is established.

The new equilibrium can be described by
A. $\mathrm{pH}<\mathrm{pOH}$ and $\mathrm{K}_{w}=1 \times 10^{-14}$
B. $\mathrm{pH}<\mathrm{pOH}$ and $\mathrm{K}_{w}<1 \times 10^{-14}$
C. $\mathrm{pH}>\mathrm{pOH}$ and $\mathrm{K}_{w}=1 \times 10^{-14}$
D. $\mathrm{pH}>\mathrm{pOH}$ and $\mathrm{K}_{w}>1 \times 10^{-14}$
26. Consider the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+\text { energy } \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will decrease and the K_{w} will remain constant when
A. a strong acid is added.
B. a strong base is added.
C. the temperature is increased.
D. the temperature is decreased.
27. Which of the following graphs describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH ?
A.

B.

C.

D.

28. When the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution is increased to twice the original concentration, the change in pH could be from
A. $\quad 1.7$ to 1.4
B. 2.0 to 4.0
C. 5.0 to 2.5
D. 8.5 to 6.5
29. The relationship $\frac{\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-} \mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}\right]}$is the
A. K_{a} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}$
B. K_{b} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}$
C. K_{a} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}$
D. K_{b} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}$
30. Which of the following describes the relationship between acid strength and K_{a} value for weak acids?
A.

Acid Strength	K_{a}
increases	increases
increases	decreases
decreases	increases
decreases	remains constant

31. The value of K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$ is
A. 2.2×10^{-13}
B. 6.2×10^{-8}
C. 1.6×10^{-7}
D. 4.5×10^{-2}
32. Which of the following 1.0 M solutions would have a pH greater than 7.00 ?
A. HCN
B. KNO_{3}
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{NaCH}_{3} \mathrm{COO}$
33. What is the pH at the transition point for an indicator with a K_{a} of 2.5×10^{-4} ?
A. 2.5×10^{-4}
B. $\quad 3.60$
C. $\quad 7.00$
D. $\quad 10.40$
34. What volume of 0.100 M NaOH is required to completely neutralize 15.00 mL of $0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?
A. $\quad 5.00 \mathrm{~mL}$
B. $\quad 15.0 \mathrm{~mL}$
C. $\quad 30.0 \mathrm{~mL}$
D. 45.0 mL
35. What is the pH of the solution formed when 0.060 moles NaOH is added to 1.00 L of 0.050 M HCl ?
A. $\quad 2.00$
B. $\quad 7.00$
C. $\quad 12.00$
D. 12.78
36. Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?
A.

B.

C.

D.

37. A gas which is produced by internal combustion engines and contributes to the formation of acid rain is
A. H_{2}
B. O_{3}
C. CH_{4}
D. NO_{2}
38. Which of the following represents a redox reaction?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{SiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Si}+2 \mathrm{MgCl}_{2}$
C. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\mathrm{AgBr}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}+\mathrm{Br}^{-}$
39. Consider the following reaction:

$$
\mathrm{TiCl}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{TiO}_{2}+2 \mathrm{Cl}_{2}
$$

Each oxygen atom is
A. reduced and loses $2 \mathrm{e}^{-}$
B. reduced and gains $2 \mathrm{e}^{-}$
C. oxidized and loses $2 \mathrm{e}^{-}$
D. oxidized and gains $2 \mathrm{e}^{-}$
40. When NO_{2} acts as a reducing agent, a possible product is
A. NO
B. $\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$
41. Which of the following 1.0 M solutions will react spontaneously with lead?
A. KCl
B. CuCl_{2}
C. ZnCl_{2}
D. MgCl_{2}
42. Consider the following redox reaction:

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}
$$

In a titration, 40.00 mL of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is needed to react completely with $4.0 \times 10^{-3} \mathrm{~mol} \mathrm{I}_{2}$. What is the concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
A. $\quad 0.10 \mathrm{M}$
B. 0.16 M
C. $\quad 0.20 \mathrm{M}$
D. 0.32 M
43. In an operating electrochemical cell the function of a salt bridge is to
A. allow hydrolysis to occur.
B. allow a non-spontaneous reaction to occur.
C. permit the migration of ions within the cell.
D. transfer electrons from the cathode to the anode.

Use the following diagram to answer questions 44 and 45.

44. As the cell operates, electrons flow toward
A. the Pb electrode, where Pb is oxidized.
B. the Cd electrode, where Cd is oxidized.
C. the Pb electrode, where Pb^{2+} is reduced.
D. the Cd electrode, where Cd^{2+} is reduced.
45. The E° value for the reduction of Cd^{2+} is
A. -0.40 V
B. -0.27 V
C. +0.14 V
D. +0.40 V
46. The following reaction occurs in an electrochemical cell:

$$
3 \mathrm{Cu}^{2+}+2 \mathrm{Cr} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cu}
$$

The E° for the cell is
A. 0.40 V
B. 0.75 V
C. 1.08 V
D. 2.50 V
47. During the corrosion of magnesium, the anode reaction is
A. $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$
B. $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}$
C. $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
D. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$
48. A molten binary salt, ZnCl_{2}, undergoes electrolysis. The cathode reaction is
A. $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
B. $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
C. $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$
D. $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$

PART B: WRITTEN RESPONSE

Value: $\mathbf{3 2}$ marks
Suggested Time: 50 minutes
INSTRUCTIONS: You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
Your steps and assumptions leading to a solution must be written in the spaces below the questions.
Answers must include units where appropriate and be given to the correct number of significant figures.
For questions involving calculation, full marks will NOT be given for providing only an answer.

1. A student wishes to monitor the rate of the following reaction:

$$
\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Identify two different properties that could be used to monitor the rate of the reaction.
Describe and explain the changes that would occur.
Property 1: \qquad
Change and Explanation: \qquad

Property 2: \qquad
Change and Explanation: \qquad
\qquad
2. Consider the following reaction for the formation of HCl in the presence of light.

$$
\mathrm{Cl}_{2}+\mathrm{CHCl}_{3} \rightarrow \mathrm{HCl}+\mathrm{CCl}_{4}
$$

The following is the proposed reaction mechanism:

Step 1	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}$
Step 2	$\boldsymbol{?}$
Step 3	$\mathrm{Cl}+\mathrm{CCl}_{3} \rightarrow \mathrm{CCl}_{4}$

Determine Step 2 of the reaction mechanism.
(2 marks)
3. Consider the following equilibrium:

$$
\begin{aligned}
& \text { HInd }+\mathrm{H}_{2} \mathrm{O} \underset{3}{\rightleftarrows} \mathrm{H}_{3} \mathrm{O}^{+}+\begin{array}{c}
\text { Ind }^{-} \\
\text {(ylue) }
\end{array}
\end{aligned}
$$

The system is yellow and turns blue on the addition of NaOH . In terms of the forward and reverse reaction rates, explain why this shift occurs.
\qquad
\qquad
\qquad
\qquad
\qquad
4. Consider the following equilibrium:

$$
\mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \rightleftarrows \mathrm{FeSCN}_{(a q)}^{2+}
$$

Initially, $50.0 \mathrm{~mL}^{\text {of }} 0.10 \mathrm{M} \mathrm{Fe}^{3+}$ is added to 30.0 mL of $0.20 \mathrm{M} \mathrm{SCN}^{-}$.
At equilibrium, the concentration of FeSCN^{2+} is found to be 0.050 M .
Calculate the $\mathrm{K}_{e q}$ for the reaction.
(4 marks)
5. a) Write the balanced formula equation for the reaction between $\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$ and $\mathrm{CuCl}_{2(a q)}$.
(1 mark)
b) Write the net ionic equation for the reaction between $\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$ and $\mathrm{CuCl}_{2(a q)}$. ($\mathbf{1}$ mark)
6. A saturated solution of nickel carbonate, NiCO_{3}, contains 0.090 g in 2.0 L of solution. Calculate $\mathrm{K}_{s p}$ for NiCO_{3}.
7. Define the term amphiprotic. Give an example of an ion which is amphiprotic.

Definition: \qquad
\qquad

Example: \qquad
8. A 0.0200 M solution of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a $\mathrm{pH}=11.40$.

Calculate the K_{b} for methylamine.
9. A titration was performed by adding 0.115 M NaOH to a 25.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ from the following data.

	Trial \#1	Trial \#2	Trial \#3
Initial volume of $\mathrm{NaOH}(\mathrm{mL})$	4.00	17.05	8.00
Final volume of $\mathrm{NaOH}(\mathrm{mL})$	17.05	28.00	19.05

10. a) Indicate in the blank spaces on the following chart whether or not a reaction will occur when the metals are added to aqueous ions.

metal	Pd	Rh	Pt
Pd^{2+}			
Rh^{2+}	no reaction		no reaction
Pt^{2+}	reaction	reaction	

b) List the oxidizing agents in order of strongest to weakest.
(1 mark)
11. Balance the following redox reaction in basic solution:

$$
\mathrm{Au}+\mathrm{Cl}^{-}+\mathrm{O}_{2} \rightarrow \mathrm{AuCl}_{4}^{-}+\mathrm{OH}^{-} \quad \text { (basic) }
$$

12. Draw and label a simple electrolytic cell capable of electroplating an inert electrode with silver. (2 marks)

Chemistry 12

January 2000 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Reaction Kinetics
2. Dynamic Equilibrium
3. Solubility Equilibria
4. Acids, Bases, and Salts
5. Oxidation - Reduction

Sub-Organizers
A, B, C
D, E, F
G, H, I
J, K, L, M, N, O, P, Q, R
S, T, U, V, W

Part A: Multiple Choice

Q	K	C	CO	PLO	Q	K	C	CO	PLO
1.	B	U	1	A1	25.	A	H	4	L3
2.	C	U	1	A6	26.	B	U	4	L3, L6
3.	D	K	1	B3	27.	D	H	4	L11
4.	A	U	1	B6	28.	A	U	4	L12
5.	B	U	1	B9	29.	A	K	4	M1
6.	D	K	1	C3	30.	A	K	4	M2
7.	A	U	2	D3	31.	C	U	4	M4
8.	C	K	2	D5	32.	D	U	4	N3
9.	A	U	2	D7	33.	B	U	4	O4
10.	C	H	2	E2	34.	D	U	4	P3
11.	B	U	2	E2	35.	C	U	4	P5
12.	C	K	2	F2	36.	D	H	4	Q5
13.	B	U	2	F8	37.	D	K	4	R4
14.	B	K	3	G3	38.	B	U	5	S1
15.	B	U	3	G8	39.	B	U	5	S1
16.	C	U	3	H2	40.	D	U	5	S2
17.	D	H	3	H5	41.	B	U	5	S6
18.	A	U	3	I3	42.	C	U	5	T6
19.	C	U	3	I4	43.	C	K	5	U1
20.	D	U	3	I5	44.	C	U	5	U2, U4
21.	A	H	3	H5	45.	A	U	5	U7
22.	C	K	4	J2	46.	C	U	5	U9
23.	D	U	4	J8, N4	47.	A	K	5	V2
24.	A	U	4	K1, K6	48.	D	K	5	W2

Multiple Choice $=\mathbf{4 8}$ marks

Part B: Written Response

\mathbf{Q}	\mathbf{B}	\mathbf{C}	\mathbf{S}	$\mathbf{C O}$	PLO
1.	1	U	2	1	A 4
2.	2	H	2	1	C 2
3.	3	U	2	2	E 3
4.	4	U	4	2	F 6
5.	5	U	2	3	H 3
6.	6	U	3	3	I 7
7.	7	K	2	4	$\mathrm{~K} 10, \mathrm{~K} 11$
8.	8	U	4	4	M 5
9.	9	U	3	4	P 2
10.	10	U	2	5	S 4
11.	11	U	4	5	T 2
12.	12	U	2	5	W 6

Written Response = $\mathbf{3 2}$ marks

$$
\begin{aligned}
\text { Multiple Choice } & =48(48 \text { questions }) \\
\text { Written Response } & =32(12 \text { questions }) \\
\text { ExAMINATION TOTAL } & =\mathbf{8 0} \text { marks }
\end{aligned}
$$

LEGEND:

$\mathbf{Q}=$ Question Number $\quad \mathbf{K}=$ Keyed Response $\quad \mathbf{C}=$ Cognitive Level $\mathbf{B}=$ Score Box Number $\quad \mathbf{S}=$ Score $\quad \mathbf{C O}=$ Curriculum Organizer PLO $=$ Prescribed Learning Outcome

PART B: WRITTEN RESPONSE

Value: 32 marks
Suggested Time: 50 minutes
INSTRUCTIONS: You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
Your steps and assumptions leading to a solution must be written in the spaces below the questions.
Answers must include units where appropriate and be given to the correct number of significant figures.

For questions involving calculation, full marks will NOT be given for providing only an answer.

1. A student wishes to monitor the rate of the following reaction:

$$
\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Identify two different properties that could be used to monitor the rate of the reaction. Describe and explain the changes that would occur.

Solution:

For Example:
Property: Mass $\leftarrow \frac{1}{2}$ mark
Change and Explanation: Mass decreases because $\mathrm{CO}_{2(g)}$ leaves the system. $\leftarrow \frac{\mathbf{1}}{\mathbf{2}}$ mark
Property: $\mathrm{pH} \quad \leftarrow \frac{1}{2} \operatorname{mark}$
Change and Explanation: pH increases because HCl is consumed. $\leftarrow \frac{1}{2}$ mark
2. Consider the following reaction for the formation of HCl in the presence of light.

$$
\mathrm{Cl}_{2}+\mathrm{CHCl}_{3} \rightarrow \mathrm{HCl}+\mathrm{CCl}_{4}
$$

The following is the proposed reaction mechanism:

Step 1	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}$
Step 2	$?$
Step 3	$\mathrm{Cl}+\mathrm{CCl}_{3} \rightarrow \mathrm{CCl}_{4}$

Determine Step 2 of the reaction mechanism.
(2 marks)
Solution:
$\mathrm{Cl}+\mathrm{CHCl}_{3} \rightarrow \mathrm{HCl}+\mathrm{CCl}_{3} \quad \leftarrow \mathbf{2}$ marks
3. Consider the following equilibrium:

$$
\begin{aligned}
& \text { HInd }+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\begin{array}{c}
\text { Ind }^{-} \\
\text {(blue) }
\end{array} \\
& \text { (yellow) }
\end{aligned}
$$

The system is yellow and turns blue on the addition of NaOH . In terms of the forward and reverse reaction rates, explain why this shift occurs.

Solution:

For Example:

Addition of OH^{-}decreases $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, decreasing the reverse rate. Since the forward rate is greater than the reverse rate, the system shifts to the right.
4. Consider the following equilibrium:

$$
\mathrm{Fe}_{(a q)}^{3+}+\mathrm{SCN}_{(a q)}^{-} \rightleftarrows \mathrm{FeSCN}_{(a q)}^{2+}
$$

Initially, $50.0 \mathrm{~mL}^{\text {of }} 0.10 \mathrm{M} \mathrm{Fe}^{3+}$ is added to 30.0 mL of $0.20 \mathrm{M} \mathrm{SCN}^{-}$.
At equilibrium, the concentration of FeSCN^{2+} is found to be 0.050 M .
Calculate the $\mathrm{K}_{e q}$ for the reaction.
(4 marks)

Solution:

For Example:

$\left.\begin{array}{c}{\left[\mathrm{Fe}^{3+}\right]=\frac{50.0 \mathrm{~mL}}{80.0 \mathrm{~mL}} \times 0.10 \mathrm{M}=0.0625 \mathrm{M}} \\ {\left[\mathrm{SCN}^{-}\right]=\frac{30.0 \mathrm{~mL}}{80.0 \mathrm{~mL}} \times 0.20 \mathrm{M}=0.0750 \mathrm{M}}\end{array}\right] \leftarrow \mathbf{1} \mathbf{~ m a r k}$
5. a) Write the balanced formula equation for the reaction between $\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$ and $\mathrm{CuCl}_{2(a q)}$. (1 mark)

Solution:

$$
2 \mathrm{Na}_{3} \mathrm{PO}_{4(a q)}+3 \mathrm{CuCl}_{2(a q)} \rightarrow 6 \mathrm{NaCl}_{(a q)}+\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \leftarrow \mathbf{1} \text { mark }
$$

b) Write the net ionic equation for the reaction between $\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$ and $\mathrm{CuCl}_{2(a q)}$. ($\mathbf{1}$ mark)

Solution:

$$
3 \mathrm{Cu}_{(a q)}^{2+}+2 \mathrm{PO}_{4}{ }_{(a q)}^{3-} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \quad \leftarrow \mathbf{1} \text { mark }
$$

6. A saturated solution of nickel carbonate, NiCO_{3}, contains 0.090 g in 2.0 L of solution. Calculate $\mathrm{K}_{s p}$ for NiCO_{3}.
(3 marks)

Solution:

$$
\left.\begin{array}{rl}
{\left[\mathrm{NiCO}_{3}\right]=} & \frac{0.090 \mathrm{~g}}{2.0 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{118.7 \mathrm{~g}}=3.79 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
\mathrm{NiCO}_{3(s)} \stackrel{\mathrm{Ni}_{(a q)}^{2+}+}{\rightleftarrows}+\mathrm{CO}_{3}^{-} \\
& 3.79 \times 10^{-4} \mathrm{M} \text { mark } \\
\mathrm{K}_{s p}= & {\left[\mathrm{Ni}^{2+}\left[\mathrm{CO}_{3}^{2-}\right]\right.} \\
= & \left(3.79 \times 10^{-4} \mathrm{M}\right. \\
= & \left.1.4 \times 10^{-7}\right)\left(3.79 \times 10^{-4}\right)
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
$$

(Deduct $\frac{\mathbf{1}}{\mathbf{2}} \mathbf{~ m a r k}$ for incorrect significant figures.)
7. Define the term amphiprotic. Give an example of an ion which is amphiprotic.

Solution:

For Example:

The ability to act as either an acid or a base.
$\leftarrow \mathbf{1}$ mark
For example $\mathrm{HPO}_{4}{ }^{2-}$.
$\leftarrow \mathbf{1}$ mark
8. A 0.0200 M solution of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, has a $\mathrm{pH}=11.40$.

Calculate the K_{b} for methylamine.

Solution:

For Example:

	$\begin{aligned} & \mathrm{pOH}=2.60 \\ & {\left[\mathrm{OH}^{-}\right]=2.51 \times 10^{-3}} \end{aligned}$			$\} \leftarrow 1$ mark
	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$+\mathrm{OH}^{-}$	$\leftarrow 1 \frac{1}{2}$ marks
[I]	0.0200	0	0	
[C]	$-2.51 \times 10^{-3}+$	$+2.51 \times 10^{-3}$	$+2.51 \times 10^{-3}$	
[E]	0.01749	2.51×10^{-3}	2.51×10^{-3}	
$\mathrm{K}_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \text {[} \mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}$				
$=\frac{\left(2.51 \times 10^{-3}\right)\left(2.51 \times 10^{-3}\right)}{0.01749}$				$\leftarrow \mathbf{1} \frac{1}{2}$ marks
$=3.6 \times 10^{-4}$				

(Deduct $\frac{\mathbf{1}}{\mathbf{2}}$ mark for incorrect significant figures.)
9. A titration was performed by adding 0.115 M NaOH to a 25.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ from the following data.

	Trial \#1	Trial \#2	Trial \#3
Initial volume of $\mathrm{NaOH}(\mathrm{mL})$	4.00	17.05	8.00
Final volume of $\mathrm{NaOH}(\mathrm{mL})$	17.05	28.00	19.05

Solution:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftarrows \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{rlrl}
\text { vol of } \mathrm{NaOH} & =11.00 \mathrm{~mL} & & \leftarrow \mathbf{1} \text { mark } \\
\mathrm{mol} \mathrm{NaOH} & =0.01100 \mathrm{~L}(0.115 \mathrm{~mol} / \mathrm{L})=1.265 \times 10^{-3} \mathrm{~mol} & \leftarrow \frac{1}{2} \text { mark } \\
\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{1}{2}\left(1.265 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}\right)=6.325 \times 10^{-4} \mathrm{~mol} & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]} & =\frac{6.325 \times 10^{-4} \mathrm{~mol}}{0.02500 \mathrm{~L}}=0.0253 \mathrm{M} & & \leftarrow \frac{1}{2} \mathrm{mark}
\end{array}
$$

10. a) Indicate in the blank spaces on the following chart whether or not a reaction will occur when the metals are added to aqueous ions.

metal	Pd	Rh	Pt
Pd^{2+}		reaction	no reaction
Rh^{2+}	no reaction		no reaction
Pt^{2+}	reaction	reaction	

Solution:

See table above.

b) List the oxidizing agents in order of strongest to weakest.
(1 mark)

Solution:

$$
\mathrm{Pt}^{2+}>\mathrm{Pd}^{2+}>\mathrm{Rh}^{2+}
$$

11. Balance the following redox reaction in basic solution:

$$
\mathrm{Au}+\mathrm{Cl}^{-}+\mathrm{O}_{2} \rightarrow \mathrm{AuCl}_{4}^{-}+\mathrm{OH}^{-} \quad \text { (basic) }
$$

Solution:

For Example:

$4 \times\left(\mathrm{Au}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{AuCl}_{4}^{-}+3 \mathrm{e}^{-}\right)$
$\frac{3 \times\left(4 \mathrm{e}^{-}+3 \mathrm{H}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}\right)}{4 \mathrm{Au}+16 \mathrm{Cl}^{-}+9 \mathrm{H}^{+}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{AuCl}_{4}^{-}+3 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O}}$
$+9 \mathrm{OH}^{-}$
$4 \mathrm{Au}+16 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{AuCl}_{4}^{-}+12 \mathrm{OH}^{-}$

1 mark for balancing

charges

1 mark for addition

1 mark for basic\end{array}\right.\)

OR

For Example:

$$
\left.\begin{array}{cc}
4 \mathrm{Au}+16 \mathrm{Cl}^{-}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{AuCl}_{4}^{-}+12 \mathrm{OH}^{-} & \} \leftarrow \\
4 \mathrm{Au}+6 \mathrm{H}_{2} \mathrm{O}+16 \mathrm{Cl}^{-}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{AuCl}_{4}^{-}+12 \mathrm{OH}^{-}
\end{array}\right\} \leftarrow \quad \mathbf{1} \text { mark for for hydrogen }\left(\mathbf{H}_{2} \mathbf{O}\right)
$$

12. Draw and label a simple electrolytic cell capable of electroplating an inert electrode with silver.
(2 marks)

Solution:

For Example:

END OF KEY

