Introduction to Electrochemistry

electrochemistry = branch of chemistry concerned with the conversion of chemical energy to electrical energy (& vice versa)

- electrochemical reactions involve the **transfer of electrons** from one substance to another
- consider the reaction:

 $2Al + 3Cu^{2+} \rightarrow 2Al^{3+} + 3Cu$

- electrons are transferred from Al to Cu²⁺
- we can re-write this equation as two separate half-reactions

oxidation half-reaction: Al \rightarrow Al³⁺ + 3e-

reduction half-reaction: $Cu^{2+} + 2e^{-} \rightarrow Cu$

• when a substance becomes **oxidized** it **becomes more positively charged** because it is losing electrons (which are negatively charged)

$$Zn \rightarrow Zn^{2+} + 2e-$$

$$U^{3+} \rightarrow U^{4+} + e-$$

$$2Cl^{-} \rightarrow Cl_{2} + 2e-$$

• when a substance becomes **reduced** it **becomes more negatively charged** because it is gaining electrons

$$Cu^{2+}$$
 2e- \rightarrow Cu
 V^{3+} + e- \rightarrow V^{2+}
 F_2 + 2e- \rightarrow 2F⁻

- every reduction reaction must be accompanied by an oxidation reaction since the electrons must be transferred somewhere
 - > these are called **REDOX reactions**

- > Al is the reducing agent because it causes Cu²⁺ to become reduced
- > Cu²⁺ is the oxidizing agent because it causes Al to become oxidized

The **oxidizing agent** is the reactant reduced (gains e-) during a reaction.

The **reducing agent** is the reactant oxidized (loses e-) during a reaction.

Oxidation Numbers

• oxidation numbers can be used to determine whether an atom has been oxidized or reduced

oxidation number = real or apparent charge an atom or ion has when all of the bonds are assumed to be ionic

Determining oxidation number:

- 1. atoms in elemental form = $\mathbf{0}$
- 2. simple ions = the charge on ion
 - 1. Li⁺, Na⁺, K⁺ and all other **group 1 ions** have an oxidation number of **1+**
 - Ca²⁺, Ba²⁺, Mg²⁺ and all other group 2 ions have an oxidation number of 2+
 - 3. F⁻, Cl⁻, Br⁻, I⁻ (**halogens**) are usually **1**but there are many exceptions, especially in covalent compounds
- 3. hydrogen = +1 (except in metallic hydrides such as NaH or BaH₂ where it is 1-)
- 4. oxygen = 2- (in peroxides, H_2O_2 , it is 1-)
- 5. oxidation numbers of other atoms are assigned so that the sum of the oxidation numbers (positive & negative) equals the net charge on the molecule or ion

Determine the oxidation numbers of each atom for the following:

When an atom's oxidation number increases, it has become oxidized, and when an atom's oxidation

 $\begin{array}{cccc} Fe^{2} + & Co \longrightarrow Co^{2} + & Fe \\ \hline Reduction & Oxidation \\ O.A. & R.A. \end{array}$