

- Predict whether a spontaneous reaction is expected and state the products if spontaneous.
 - 1. Zn(s) and $\hat{H}_2(g)$ $non \cdot span$

3. H⁺ is added to Mn(s)

$$Mn + 2H^{+} \longrightarrow H_{2} + Mn^{2+}$$

Balancing Half-Reactions

- half-reactions must be balanced for mass & charge
- steps to balancing a half-reaction:
 - balance all major atoms other than O & H
 - 2. balance **oxygens** by adding water (H₂O) molecules
 - 3. assume solutions are acidic and balance hydrogens by adding H⁺
 - balance the **charge** by adding electrons (e-) 4.

ex. Balance the following half-reaction:
$$\frac{\mathcal{E}_{r_2}^+ O_7^{2-} \rightarrow Cr^{3+}}{\mathcal{C}_{r_2}^+ O_7^{2-} \rightarrow Cr^{3+}}$$
Atoms (1)
$$C_{r_2}O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$
(add H₀)
$$C_{r_2}O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$
(add H+) (3)
$$14H^+ + Cr_2O_7^2 \rightarrow 2Cr^{3+} + 7H_2O$$
(be-+ $14H^+ + Cr_2O_7^2 \rightarrow 2Cr^{3+} + 7H_2O$

• in basic solutions . . . balance the equation as if it were acidic, then convert to basic by adding equal numbers of hydroxide ions (OH-) to both sides of the equation and cancelling out the H⁺ as water

$$O_{(H_{20})} @ MnO_{4} \rightarrow MnO_{2} + 2H_{2}O$$

$$H = 3 + 4H^{+} + M_{0}O_{4} \rightarrow M_{0}O_{2} + 2H_{2}O_{4}$$

(H₂0)
H 3 4H++MnO₄
$$\rightarrow$$
 MnO₂ + 2H₂O
(H+)
Charge (A) 3e-+4H++MnO₄ \rightarrow MnO₂ + 2H₂O
(e-)