Calculate the molar solubility of CuCl_{2} if 500.0 mL of a saturated solution contain 43.5 g .
$0.647 \frac{\mathrm{~mol}}{\mathrm{~L}}$

Predicting the Solubility of Salts

- the Solubility Table in the Chem12 Data Booklet is used to predict the solubility of various salts (ionic compounds) in water at $25^{\circ} \mathrm{C}$
- nothing is INSOLUBLE in water
- BUT if the amount that dissolves is so small that we can ignore it, we say that the substance has NEGLIGIBLE SOLUBILITY in water (ex. glass)
- some substances dissolve only slightly, but in an amount that can not be ignored; they have LOW SOLUBILITY

> A substance with LOW SOLUBILITY requires less than 0.1 M to make a saturated solution

Consider the following section from the Solubility Table:

NEGATIVE IONS (Anions)	POSITIVE IONS (Cations)	SOLUBILITY OF COMPOUNDS
$\text { Carbonate, } \mathrm{CO}_{3}^{2-}$	$\begin{aligned} & \text { Alkali ions, } \mathrm{H}^{+}, \mathrm{NH}_{4}^{+} \\ & >\mathrm{Na}-1 \end{aligned}$	Soluble
$\text { Sulphite, } \mathrm{SO}_{3}^{2-}$	All others	LOW SOLUBILITY

- alkali ions are the ions of Group 1 and include Li ${ }^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Fr}^{+}$.
- the table indicates that any compound that contains the anion $\mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$ or $\mathrm{SO}_{3}{ }^{2-}$ and the cations alkali ions, H^{+}or NH_{4}^{+}are soluble but any other cation will form a compound of low solubility (precipitate forms) Ppt
- although the cations are not explicitly listed, they fall under the "all others" category"

When two ions form a compound having LOW SOLUBILITY, the mixing of solutions of these two ions will form a PRECIPITATE.

Q . Which of the following compounds have low solubility?

$\mathrm{Na}, \mathrm{PO}_{4} . \mathrm{MgSO}_{3}, \mathrm{ZnCO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Q. Will a precipitate form when equal volumes of 0.2 M CaS and $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed? (Note equal volumes of 0.2 M solutions make 0.1 M solutions, our threshold for low solubility.)

$$
\mathrm{CaS}_{(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \underbrace{\mathrm{CaSO}_{l}(\mathrm{~s})}_{\substack{\text { law } \\ \text { Pot }}}+\underbrace{\mathrm{Na}_{2} \mathrm{~S}_{(a \mathrm{a}}}_{\text {Soluble }}
$$

It is useful to remember that compounds containing alkali ions, $\mathrm{H}^{+}, \mathrm{NH}_{4}^{+}$or NO_{3}^{-}are soluble in water.

- in some problems you will be asked to find a compound that will precipitate a particular ion
- ions do not exist on their own but rather are always associated with ions of the opposite charge
- ions are usually added as compound of soluble salts

ANIONS are added as sodium salts.
CATIONS are added as nitrate salts:
Q. What compound could precipitate $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ from a solution? add

Q. What compound could precipitate $\mathrm{Sr}^{2+}(\mathrm{aq})$ from a solution?

$$
\left.\begin{array}{l}
\text { a solution? } \\
\mathrm{PO}_{4}^{3-} \\
\mathrm{SO}_{4}^{2-} \\
\mathrm{CO}_{3}^{2-} \\
\mathrm{SO}_{3}^{2-}
\end{array}\right\}
$$

