Balance the following half-reactions:

1. $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{HSO}_{4}^{-}$(acidic solution)
2. $\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}$ (basic solution)

$$
\begin{aligned}
& \mathrm{S}_{2} \mathrm{Og}^{2}+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow 2 \mathrm{HSO}_{4}^{-} \\
& \mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{OH} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}- \\
& 40 \mathrm{H}^{\prime}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+\underset{\substack{4 \mathrm{H}^{+} \\
4 \mathrm{H} \mathrm{H}_{2} \mathrm{O}}}{\substack{ \\
4}}+4 e-
\end{aligned}
$$

Balancing Redox Equations Using Half-Reactions

An overall redox equation can be obtained by:

1. breaking into separate reduction and oxidation half-reactions
2. balancing each half
3. adding the two half reactions together once the number of e- lost in oxidation are balanced by the e- gained by reduction
ex. Balance the following redox reaction:

$$
\begin{aligned}
& \mathrm{ClO}_{4}^{-}+\mathrm{I}_{2} \rightarrow \mathrm{Cl}^{-}+\mathrm{IO}_{3}^{-} \\
& \left(8 e^{-}+8 \mathrm{H}^{+}+\mathrm{ClO}_{4}^{-} \rightarrow \mathrm{Cl}+4 \mathrm{H}_{2} \mathrm{O}\right) \\
& 4\left(6+20+\mathrm{I}_{2} \rightarrow \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 e^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{I}_{2}+5 \mathrm{ClO}_{4}^{-} \rightarrow 5 \mathrm{Cl}^{-}+8 \mathrm{IO}_{3}^{-}+8 \mathrm{H}^{+}
\end{aligned}
$$

Balanced redox equations do not show e- and the number of atoms and the total charge are balanced on both sides of the equation.

In basic solutions, the final equation can be converted by adding equal numbers of hydroxide molecules to both sides of the the equation and cancelling out the water molecules

$$
5 \mathrm{ClO}_{4}^{-}+4 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cl}^{-}+8 \mathrm{IO}_{3}^{-}+8 \mathrm{H}^{+}
$$

- for basic solution, add $8 \mathrm{OH}^{-}$to both sides

$$
{ }^{8 \mathrm{OH}^{-}}-5 \mathrm{ClO}_{4}^{-}+4 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cl}^{-}+8 \mathrm{IO}_{3}^{-}+\underbrace{8 \mathrm{H}^{+}+8 \mathrm{OH}^{-}}_{8 \mathrm{H}_{2} \mathrm{O}}
$$

- cancel out water:

$$
8 \mathrm{OH}^{-}+5 \mathrm{ClO}_{4}^{-}+4 \mathrm{I}_{2} \rightarrow 5 \mathrm{Cl}^{-}+8 \mathrm{IO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O}
$$

In some redox reactions, it is possible for the same chemical to undergo oxidation and reduction. Such a reaction is called disproportionation.

$$
\mathrm{ClO}_{2}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}
$$

The two half-reactions are:

$$
\begin{aligned}
& \left(\begin{array}{l}
3 \mathrm{O} \\
+\mathrm{ClO}_{2}^{-} \rightarrow \\
3+\mathrm{ClO}_{3}^{-}
\end{array}+2 \mathrm{H}^{+}+2 e^{-}\right) 2 \\
& \mathrm{Cl}+\mathrm{NN}+\underset{\mathrm{ClO}_{2}^{8}}{3+\mathrm{red}^{2}} \stackrel{1-}{\mathrm{Cl}^{-}}+2 \mathrm{H} / 2 \mathrm{O}
\end{aligned}
$$

Balanced redox equation is:

$$
3 \mathrm{ClO}_{2}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}
$$

Balance the following redox reactions by the oxidation number method:
a) $\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$ (acidic)

$$
\begin{aligned}
& 5 e^{-}+8 \mathrm{H}^{+}+ \mathrm{MnO}_{4}^{-} \\
& \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
&\left(\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+1 e^{-}\right) 5
\end{aligned}
$$

$$
8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+\mathrm{Mn}^{2++4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~F}^{3+}}
$$

b) $\mathrm{S}^{2-}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{S}$ (basic)

$$
\left(S^{2}-S+2 e-\right) 3
$$

$$
\begin{aligned}
& 6 \mathrm{e}^{-}+\mathrm{6H}^{+}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
& 6 \mathrm{OH}^{-}+3 \mathrm{~S}^{2-}+6 \mathrm{H}^{+}+\mathrm{ClO}_{3}^{-} \rightarrow 3 \mathrm{~S}+\mathrm{Cl}^{-}+6 \mathrm{H}^{-}+312 \mathrm{O} \\
& 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}^{2-}+\mathrm{COO}_{3}^{-} \rightarrow 3 \mathrm{~S}+\mathrm{Cl}^{-}+6 \mathrm{HH}^{-}
\end{aligned}
$$

c) $\mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow \mathrm{AsH}_{3}+\mathrm{Zn}^{2+}$ (basic)

$$
\left(\mathrm{Zn} \rightarrow \mathrm{Zn} n^{2}++2 \mathrm{e}-6\right.
$$

$\left(12 e^{-}+12 \mathrm{H}++\mathrm{AS}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{ASH}_{3}+3 \mathrm{H}_{2} \mathrm{O}\right)$

$$
2 \mathrm{OH}^{+} 12 \mathrm{H}+\mathrm{FAS}_{2} \mathrm{O}_{3}+6 \mathrm{Zn} \rightarrow 6 \mathrm{Zn}^{2+}+2 \mathrm{ASH}_{3}+3 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{OH}
$$

$$
9_{i 1} 2 \mathrm{O}+\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{Zn} \rightarrow 6 \mathrm{Zn}^{2}+2 \mathrm{ASH}_{3}+12 \mathrm{OH}^{-}
$$

d) $\mathrm{P}_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{PH}_{3}$ (acidic)

$$
\begin{aligned}
& \left(8 \mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{4} \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}-+8 \mathrm{H}^{+}+4 e^{-}\right) 3 \\
& 12 \mathrm{H}^{+}+\mathrm{P}_{4} \rightarrow 4 \mathrm{PH}_{3} \\
& 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{P}_{4}+12 \mathrm{HF}^{+}+\mathrm{P}_{4} \rightarrow 12 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+2 \mathrm{H}^{+} \\
& 24 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{P}_{4} \rightarrow 12 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+12 \mathrm{H}^{+} \\
& 6 \mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{4} \rightarrow 3 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+3 \mathrm{H}^{+}
\end{aligned}
$$

Balance the following redox reaction (acidic)

$$
\begin{aligned}
\mathrm{Mn}^{2+}+\mathrm{HBiO}_{3} \rightarrow \mathrm{Bi}^{3+}+ & \mathrm{MnO}_{4}^{-} \\
2 \mathrm{Mn}^{2+}+5 \mathrm{HBiO}_{3}+9 \mathrm{H}+ & \rightarrow 5 \mathrm{~B}^{3+}+2 \mathrm{MnO}_{4} \\
& +7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

