Calculate the concentration of each ion present when 350.0 mL of 1.5 M CaBr 2 is mixed with 250.0 mL of $0.50 \mathrm{M} \mathrm{CaCl}_{2}$.

Writing Formula, Complete \& Net Ionic Equations

- in Chem12, all reactions that produce precipitates (ppts) are DOUBLE REPLACEMENT reactions
$>$ positive ion in each compound exchanges
ex. Write balanced equation for reaction of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ with $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

$$
\begin{aligned}
& \text { 3Ca(NOU2 } \\
& \left.\frac{1}{\left(C^{2}+\right.}\right)
\end{aligned}
$$

- once the precipitate is determined, you must be able to write the equation in three different ways

1. Formula Equation = balanced equation in which all reactants and products given by chemical formula

$$
3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow 6 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})
$$

2. Complete Ionic Equation = shows all soluble compounds as ions

$$
3 \mathrm{Ca}_{\left(a^{-}\right.}^{2+}+\underset{\mathrm{a}_{5}}{6}+6 \mathrm{Na}^{+}+2 \mathrm{PO}_{4}^{3-} \rightarrow 6 \mathrm{Na}^{+}+6 \mathrm{NO}_{3}^{-}+\underbrace{\mathbf{C a}_{3}\left(\mathbf{P O}_{4}\right)_{2}(\mathbf{s})}
$$

3. Net Ionic Equation = all spectator ions are removed; spectator ions do not take part in the reaction and appear on both sides of the equation unchanged

$$
\begin{gathered}
3 \mathrm{Ca}^{2+}+\mathbf{6} \mathbf{N Q}_{3}{ }^{-}+\delta \mathbf{N a}^{+}+2 \mathrm{PO}_{4}{ }^{3-} \rightarrow \mathbf{\delta} \mathrm{Na}^{+}+\mathbf{6} \mathrm{NQ}_{3}{ }^{-}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \\
3 \mathrm{Ca}^{2+}+2 \mathrm{PO}_{4}{ }^{3-} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})
\end{gathered}
$$

*Note - if only net ionic is needed, simply determine the precipitate and write the balanced set of ions to complete the reaction
Q. Write the formula equation, complete ionic equation and net ionic equation for the reaction of equal volumes of 0.2 M solutions of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and
KI.
(1) formula eq. $\begin{aligned} & 1-\text { predict produte } \\ & 2 \text {-balanced } \\ & 3-\text { detwine Solubilities }(\rho p t)\end{aligned}$
(2) Complex Ionic Ez \rightarrow break (aq) into ions
(3)Ne +Ionic Eq-remore spectators. $+\mathrm{Pb} I_{1(5)}$

$$
\mathrm{Pb}_{(\text {aq })}^{2+}+2 I_{\text {(aq) }} \rightarrow \mathrm{PbI}_{2(s)}
$$

