Give the **Net-Ionic Equation** which represents a saturated solution of each of the following ionic substances in water:(*Hint: These are just like dissociation equations but they have a double arrow, indicating equilibrium.*)

- a) Ag2SO4(s)
- b) FeS(s)
- c) Mg(OH)2(s)
- d) Ca₃(PO₄)₂(s)
- e) BaSO3(s)
 - a) $Ag2SO4(s) 2 \neq Ag^{+}(aq) + SO4^{2-}(aq)$
 - b) $FeS(s) \rightleftharpoons Fe^{2+}(aq) + S^{2-}(aq)$
 - c) $Mg(OH)2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$
 - d) $Ca_3(PO_4)_2(s) \neq 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$
 - e) BaSO3(s) \neq Ba²⁺(aq) + SO3²⁻(aq)

Separating Mixtures of Ions by Precipitation

• it is apparent from the Solubility Table that a cation may form a compound that is of low solubility (a precipitate) with one anion but be soluble with another

NEGATIVE IONS (Anions)	POSITIVE IONS (Cations)	SOLUBILITY OF COMPOUNDS	
Hydroxide, OH	Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺ Soluble		
	All others	LOW SOLUBILITY	

NEGATIVE IONS (Anions)	POSITIVE IONS (Cations)	SOLUBILITY OF COMPOUNDS	
Sulphate, SO ₄ ²⁻	All others	Soluble	
	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	LOW SOLUBILITY	

- for example, Sr^{2+} will form a soluble compound with OH^{-} but a precipitate with SO_4^{2-}
- Mg²⁺ and Fe³⁺ precipitate OH⁻ but not SO₄²⁻
- the ability of cations to only precipitate with certain anions allows for SELECTIVE PRECIPITATION of those ions from a solution containing several different anions
- this is the basis of QUALITATIVE ANALYSIS which allows us to design a set of experiments to detect the presence of certain ions

Q. A solution contains either Ag⁺ or Sr²⁺ ions. Devise a method of determining which ion is present in the solution.

Q. A solution contains one or more of Ag⁺, Ni²⁺ or Ba²⁺ ions. Devise a method of separating each ion from the solution.

	a-	5042-	S2-	OH-	PO43-
AQ+	ppt	PPT	pp+	PP+	PP+
N12+	_	_	ppt	PP+	ppt
B02+	_	ppt		pp+	PP+

3. A solution is known to contain either Ba²⁺ or Mg²⁺ ions. Suggest a method by which these solutions could be analyzed to find out which ion is present. Be specific about any compounds that are added.

any compounds that are added.

802+ - PP+ PP+ PP+

MQ2+ - PP+ PP+ PP+

Add Na₂SO₄

- if ppt, contains Ba²⁺
- no ppt, contains Mg²⁺