The Solubility Product

- when substances that are only slightly soluble dissolve in water, very little is required to form a saturated solution
 - > a heterogeneous equilibrium is created between the solid and its ions

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl(aq)$$

- a saturated solution is said to be a **dynamic equilibrium** because the <u>rate of dissolving</u> **equals** the <u>rate of precipitation</u> and both reactions continue to occur even though there are <u>no macroscopic changes</u>
- saturated solutions best represented with a double arrow in their dissociation equations

- an equilibrium expression can be written for a saturated solution
 - SOLUBILITY PRODUCT EXPRESSION

for the reaction:

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl(aq)$$

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$

K_{sp} = solubility product constant

- K_{sp} is referred to as an ion product
 - it has no units and no denominator because the reactant is a solid
- large K_{sp} values indicate the products are favoured
 - \rightarrow the larger the K_{sp} , the greater the number of ions and the greater the solubility of the compound

ex. Write the K_{sp} expression for the following equilibria:

a) BaCrO₄(s)
$$\Rightarrow$$
 Ba²⁺ + CrO₄²⁻ Ksp = [6a²⁺][CrO₄²⁻]

a)
$$BaCrO_4(s) = Ba^{2+} + CrO_4^{2-}$$
 Kep = $[6a^{2+}][CrO_4^{2-}]$
b) $Ag_3PO_4(s) = 3Ag^+ + PO_4^{3-}$ Kep = $[Ag^+]^3[PO_4^{3-}]$

• consider the following saturated solution:

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl(aq)$$

- the equilibrium can be reached from either the reactants or the products
- if reached from the reactants, PbCl₂(s) is dissolved in water and

$$[Pb^{2+}] = [PbCl_2(aq)]$$

 $[Cl^-] = 2 \times [PbCl_2(aq)]$
 $[Cl^-] = 2 \times [Pb^{2+}]$

- if the equilibrium is reached from the products, the above proportions are NOT necessarily true and the [Cl⁻] and [Pb²⁺] will depend on the solutions that are mixed together
- Q. What are the [Cl $^-$] and [Pb $^{2+}$] when 25.0 mL of 0.025 M Pb(NO $_3$) $_2$ (aq) is mixed with 30.0 mL of 0.010 M AlCl $_3$ (aq)?

$$[Pb(NO_3)_2] = 25.0m(.025M) = 0.01M$$

$$55.0mL$$

$$[A1Cl_3] = 300mL (0.010M) = 5.45 \times 10^{-3}M$$

$$[Pb^2+] = 0.011M$$

$$[Cl-] = 3(5.5 \times 10^{-3}M) = 0.016M$$

Example: Calculating K_{sp} from solubility data

100 mL of a saturated PbI₂ solution was found to contain 5.23×10^{-2} g PbI₂(s). Calculate K_{sp}.

$$[PbI_{2}] = mol = (5.23 \times 10^{-2}g) \left(\frac{mol}{4bl.og}\right) \left(\frac{1}{00L}\right)$$

$$= 1.13 \times 10^{-3} M$$

$$I = 2(126.9)$$

$$PbI_{2} = Pb^{2+} + 2I$$

$$= 1.13 \times 10^{-3} M$$

$$= 2(1.13 \times 10^{-3} M)$$

$$= 2.13 \times 10^{-3} M$$

$$= (1.13 \times 10^{-3})(2.26^{84} \times 10^{-3})^{2}$$

$$= (1.13 \times 10^{-9})(2.26^{84} \times 10^{-3})^{2}$$

Example: Calculating solubility from K_{sp}

What is the molar solubility of PbCl₂ if the K_{sp} is 1.8 x 10⁻⁴?

PoCl₂ =
$$Pb^{2+} + 2Cl_{2x}$$

Ksp = $[Pb^{2+}][Cl-]^2$ molar solubility
Ksp = $(x)(2x)^2$ of $PbCl_2$
Ksp = $4x^3 = 1.8 \times 10^{-4}$
 $x^3 = 1.8 \times 10^{-4}$
 $x^3 = 4.5 \times 10^{-5}$
 $x = 3/4.5 \times 10^{-5}$
 $x = 0.036 \times 10^{-5}$
 $x = 0.036 \times 10^{-5}$

Example: Calculating ion concentrations from K_{sp} What is the [Ag⁺] in a saturated solution of Ag₂CO₃?

Note: In Chem12, there are only two types of salts that need to be considered: AB and $AB_2 \# A_2$

• if x is the solubility of a salt, then the following relationships exist between $K_{\rm sp}$ and the solubility of the salt

(AB salt)
$$K_{sp} = x^2$$
 and $x = \sqrt{K_{sp}}$

(AB₂ or A₂B salt)
$$K_{sp} = 4x^3$$
 and $x = \sqrt{\frac{K_{sp}}{4}}$

ex. The molar solubility of Ag_2S is 1.3 x 10^{-17} M. What is the K_{sp} for Ag_2S ?

$$\text{Mop} = 4x3 = 4(1.3 \times 10^{-17})^3$$
$$= 8.8 \times 10^{-51}$$

ex. The value of K_{sp} for AgCl is 1.8 x 10⁻¹⁰. What is the molar solubility of AgCl?

$$K0p = \chi^2 = 1.8 \times 10^{-10}$$

 $\chi = \sqrt{1.8 \times 10^{-10}}$
 $\sqrt{A9CIJ} = 1.3 \times 10^{-5} M$