Heterogeneous Equilibria \& Le Châtelier's Principle

Le Châtelier's Principle

when a stress is applied to a system, the system readjusts to relieve or offset the stress and the system reaches a new state of equilibrium

- consider the following equilibrium:

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

- the forward reaction is the dissolving reaction:

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$>$ if we can cause the equilibrium to SHIFT TO THE RIGHT the rate of dissolving is increased more than the rate of crystallization
$>$ more solid PbCl_{2} will dissolve and the solubility increases

- consider the following equilibrium:

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$>$ the solubility of the $\mathrm{PbCl}_{2}(\mathrm{~s})$ can be decreased by increasing either $\left[\mathrm{Pb}^{2+}\right]$ or $\left[\mathrm{Cl}^{-}\right]$
$>$ the $\left[\mathrm{Pb}^{2+}\right]$ can be increased by adding the soluble salt $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \longleftrightarrow \uparrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$>$ the $\left[\mathrm{Cl}^{-}\right]$can be increased by adding the soluble salt NaCl

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \stackrel{\longrightarrow}{\longrightarrow} \mathrm{Pb}^{2+}(\mathrm{aq})+\uparrow 2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

> COMMON ION EFFECT = decreasing the solubility of a salt by adding another salt with similar ions

- consider the following equilibrium:

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$>$ the solubility of the $\mathrm{PbCl}_{2}(\mathrm{~s})$ can be increased by decreasing either $\left[\mathrm{Pb}^{2+}\right]$ or $\left[\mathrm{Cl}^{-}\right]$
$>$ the $\left[\mathrm{Pb}^{2+}\right]$ can be decreased by adding some ion which precipitates the Pb^{2+} NaBr

- from Solubility Table - $\mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{SO}_{4}{ }^{2-}$, S^{2-}, $\mathrm{OH}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$ will pt Pb^{2+} (not Cl^{-}because already in equilibrium)
- add a soluble salt of Br^{-}such a NaBr:

$$
\begin{gathered}
\mathrm{PbCl}_{2(\mathrm{~s})} \rightleftarrows \underset{(\mathrm{aq})}{\rightleftarrows} \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \\
\\
\\
\mathrm{Br}- \\
\\
\\
\\
\\
\\
\mathrm{PbBr}_{2(\mathrm{~s})}
\end{gathered}
$$

NOTE: Precipitate must have a lower solubility than the $\mathrm{PbCl}_{2} . \mathrm{PbCl}_{2}$ has $K_{s p}=1.2 \times 10^{-5}$ so $K_{s p}$ of precipitate must be lower than this value.

- similarly, Ag^{+}can be add as AgNO_{3} to decrease $\left[\mathrm{Cl}^{-}\right]$

$$
\begin{aligned}
& \mathrm{PbCl}_{2(\mathrm{~s})} \underset{ }{\rightleftarrows} \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+\downarrow 2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \\
& \begin{array}{c}
+ \\
\mathrm{Ag}^{+} \\
\downarrow \\
\mathrm{AgCl}_{(\mathrm{s})}
\end{array}
\end{aligned}
$$

Q. What will happen to the equilibrium when the following chemicals are added?

$$
\mathrm{SrCl}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

a) 1 MrNO no effect
b) $1 \mathrm{M}\left(\mathrm{Ra}_{4} \mathrm{SO}_{4} \mathrm{SrSO}_{4}\right.$ pt, $\downarrow\left[\mathrm{Si}^{2+}\right]$, Shit t R
c) $\left.1 \mathrm{M}\left(\mathrm{SrNO}_{3}\right)_{2}\right) \uparrow\left[\mathrm{Sr}^{2+}\right]$, shift L, \uparrow Solubility
d) $1 \mathrm{M} 1 \mathrm{MCl}_{2}$

9个[Cl- ${ }^{-}$, shifts L, Sol $\downarrow \downarrow$ sol
Q. Given the following equilibrium:

$$
\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

a) how could you increase the solubility?

$$
\text { add } \mathrm{Na}_{2} \mathrm{SO}_{4}-\downarrow\left[\mathrm{s}^{2+}\right]
$$

add $\mathrm{H}_{2} \mathrm{O}$, add heat

b) how could you decrease the solubility? T[podud] add NaOH

$$
\begin{aligned}
& \text { add } \operatorname{Sr}\left(\mathrm{NO}_{3} h 2\right.
\end{aligned}
$$

Q. What will happen to the equilibrium when the following chemicals are added?

$$
\mathrm{NaBr}(\mathrm{~s}) \rightleftarrows \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

a) $1 \mathrm{M} \mathrm{NaCl} \uparrow\left[\mathrm{Na}^{+}\right]$Shift L Sol
$b \mathrm{M} \mathrm{AgNO}_{3} \quad \mathrm{AgBr}$ pot, $\downarrow[\mathrm{Br}-]$ ShifteR
c) $1 \mathrm{M} \mathrm{KNO}_{3}$
O_{4} nothing - 个sol
d) $1 \mathrm{Mlya}_{2} \mathrm{SO}_{4}$

$$
\underset{\substack{\text { more } \\ \text { AgBrppt }}}{ } W_{\left[B r^{-}\right]} \text {qq sol }
$$

