Calculate the pH in 100.0 mL of 0.400 M $\mathrm{H}_{3} \mathrm{BO}_{3}$

Answer:

$$
P H=4.77
$$

Acid - Base Titrations

- titrations are used to determine the concentration of a solution by adding the titrant until the equivalence point is reached
titration = quantitative chemical analysis used to determine the unknown concentration of a known reactant
equivalence point $=$ mole ratio in the reaction exactly equals the mole ratio required by the stoichiometry of the reaction

$$
\begin{aligned}
& -\frac{a A+b B}{+c C}+d D \\
& \frac{\text { mole } A}{\operatorname{moles} B}=\frac{a}{b}
\end{aligned}
$$

- all titration problems involve at least five parameters:
$>$ concentration of acid
$>$ volume of acid
$>$ concentration of base
$>$ volume of base
$>$ acid/base mole ratio
- when the reaction equation is given, the acid/ base ratio is read directly from the balance equation
- there are three parts to the calculation:

1. use $\mathrm{M}=\mathrm{mol} / \mathrm{L}$ to calculate moles of first substance
2. use acid/base ratio to calculate moles of second substance
3. use $\mathrm{M}=\mathrm{mol} / \mathrm{L}$ to calculate either concentration or volume of second substance

NOTE:

- several trials are necessary to check the accuracy of titrations
$>$ volumes should agree within $\pm 0.02 \mathrm{~mL}$
$>$ volumes that exceed this are discarded when calculating the average
ex. In the reaction

$$
\left\lfloor\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}\right.
$$

23.10 mL of 0.2055 M NaOH is needed to titrate a 25.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to its equivalence point. What is the $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$?

$$
\text { (3) } \begin{aligned}
{\left[\mathrm{H}_{2} \mathrm{SO}_{7}\right] \frac{\mathrm{nol}}{\mathrm{~L}} } & =\frac{2.37 \times 1 \mathrm{~m}^{-3} \mathrm{~mol}}{0.025 \mathrm{~L}} \quad 2.3735 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \\
& =9.494 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

- Titrations can also be used to determine the molar mass of an acid.

HA
ex. A 3.2357 g sample of unknown monoprotic acid is diluted to 250.0 mL . A 25.00 mL sample of the acid solution is titrated with 16.94 mL of 0.1208 M KOH . What is the molar mass of the

$$
\text { acid? } \mathrm{HA}+\mathrm{KOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KA}
$$

(1) $\mathrm{mol}_{\mathrm{KOH}}=\left(-(1208 \mathrm{~mol})(.01694 \mathrm{~L})=2.046 \times 10^{-\beta} \mathrm{mol}\right.$
(2) $\mathrm{Mol}_{\mathrm{HA}}=2.046 \times 10^{-3} \mathrm{~mol}$
(3) $\frac{\mathrm{MOl}}{\mathrm{L}} \mathrm{HA}=\frac{2.046 \times 10^{-3} \mathrm{~mol}}{.025 \mathrm{~L}}=8.185 \times 10^{-2} \mathrm{M}$

$$
\begin{aligned}
&=2.046 \times 10^{-2} \mathrm{~mol} \\
& \frac{\mathrm{~g}}{\mathrm{~mol}}=\frac{3.2359 \mathrm{~g}}{2.046 \times 10^{2} \mathrm{~mol}}==1.581 \times 10^{2} \mathrm{~g} \\
& 15 \overline{\bar{g} .1 \mathrm{~mol}}
\end{aligned}
$$

ex. A solution of HCl of unknown [] is titrated with $0.150 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$. The equivalence point is reached when 14.83 mL of $\mathrm{Ba}(\mathrm{OH})_{2}$ is added to 50.00 mL of HCl . Find $[\mathrm{HCl}]$ in original sample.
answer.

$$
[\mathrm{HCl}]=8.90 \times 10^{-2} \mathrm{M}
$$

