
Predicting Spontaneous Reactions

- a SPONTANEOUS reaction is one that will occur by itself without outside assistance
 - > spontaneous reaction can occur when the activation energy barrier is low

Progress of Reaction

Progress of Reaction

- reactions tend to favour the side of the reaction having lower energy (enthalpy, ΔH)
- **EXOTHERMIC** reactions result in a decrease in energy **products are favoured**
- **ENDOTHERMIC** reactions result in an increase in energy **reactants are favoured**

EXOTHERMIC reactions (forward or reverse) are favoured because of the tendency to move towards MINIMUM ENTHALPY (ΔH).

- from an energy stand point, exothermic reactions are favoured
- however, some endothermic reactions will occur spontaneously (ex. chemical ice pack)
- reactions have a tendency to increase disorder or randomness

> this is known as ENTROPY (ΔS)

- when entropy **increases** in the forward direction, **products** are favoured
- when entropy **decreases** in the forward direction, **reactants** are favoured

Reactions that produce the greatest amount of randomness are favoured because of a tendency to move towards MAXIMUM ENTROPY (ΔS).

• entropy can be predicted by examining the phases of the reactants and products:

gases (g) >> solutions (aq) > liquids (l) >> solids (s)

- in general, highly random states are more probable than highly ordered states
- endothermic reactions can be spontaneous when the difference in randomness between reactants and products is so great that it **overcomes** the tendency towards minimum enthalpy - these reactions are said to be "driven" by the entropy of the system

There are two "drives" or "tendencies" for reactions:

a) tendency to increase randomness (maximum entropy, ΔS)

b) tendency to lower energy (minimum enthalpy, ΔH)

Based on changes in enthalpy and entropy, predict whether each of the following reactions will be spontaneous, non-spontaneous or reach equilibrium.

a) Zn(S) + 2HCl(B) Z ZnCl₂(B) + H₁(B) ΔH = -152 kJ enthopy - products favoured = Spontaneous
b) 3C(s) + 3H₂(g) ZC₃H₆(g) ΔH = +20.4 kJ - NON enthol D' endo - Reactants favoured + look at the gas chopy - Reactants favoured + look at the gas c) 2Pb(NO₃)(S) + 597 kJ Z 2PbO(S) + 4NO(B) + O₂(g) enthol D' - endo - reactants EQUIL IBR IMM Based on changes in enthalpy and entropy, predict whether each of the following reactions will be spontaneous, non-spontaneous or reach equilibrium.

a) $\underline{6CO_2(g)} + 6H_2O(I) + ENERGY \rightarrow C_6H_{10}O_6(s) + \underline{6O_2(g)}$ $\underline{enthalpy}_{-R} \qquad NON \cdot \underline{SPONtaneous}$ $\underline{b} - CH_4(g) + H_2O(g) + \underline{49.3 \ kJ} \rightarrow CO(g) + \underline{3H_2(g)}$ $\underline{cnthalpy}_{-R} = \underline{CQUIBRIUM}^{4(mu)}$ $\underline{cnthapy}_{-R} = \underline{CQUIBRIUM}^{4(mu)}$ $\underline{cnthalpy}_{-R} = \underline{CQUIBRIUM}^{4(mu)}$ $\underline{cnthalpy}_{-R} = \underline{CQUIBRIUM}^{4(mu)}$