Which of the following is a stronger acid?

- a) HIO_3 or CH_3COOH
- b) H_2O_2 or HSO_3^-
- c) $H_2PO_4^-$ or HCN

Equilibrium Constant for the Ionization of Water

 a solution can be classified as acidic, basic or neutral based on the relative concentrations of H₃O⁺ and OH⁻

acidic
$$[H_3O^+] > [OH^-]$$

neutral $[H_3O^+] = [OH^-]$
basic $[H_3O^+] < [OH^-]$

- even in the absence of acids or bases, pure water contains a very small amount of H_3O^+ and OH^- as a result of collisions between water molecules
- self-ionization can be represented as:

$$59kJ + 2H_2O(1) \Rightarrow H_3O^+(aq) + OH^-(aq)$$

• an equilibrium constant for this reaction can be written as:

Keq = Kw =
$$[\underline{H_3O^+}][OH^-] = [H_3O^+][OH^-]$$

Kw = dissociation constant for water

In pure water, at 25°C, $[H_3O^+] = 1.00 \text{ x } 10^{-7} \text{ M}$ $[OH^-] = 1.00 \text{ x } 10^{-7} \text{ M}$

 $Kw = [1.00 \text{ x } 10^{-7} \text{ M}][1.00 \text{ x } 10^{-7} \text{ M}] = 1.00 \text{ x } 10^{-14}$

- the value of Kw only varies with temperature
- when Kw or the temperature is not stated, it can be assumed that $Kw = 1.00 \times 10^{-14}$

ex.
What is
$$[OH^{-}]$$
 in 0.025 M HCI?
HCI $H^{+} + C_{-}^{-}$
O.025M $(H_{30^{+}})$
O.025M
 $KW^{2} [OH^{-}][H_{30^{+}}] = KW = \frac{|_{0}00 \times 10^{-14}}{0.025}$
 $[H_{20^{+}}] = KW = \frac{|_{0}00 \times 10^{-14}}{0.025}$
 $= 4.0 \times 10^{-13} M$

Find [H₃O⁺] in 0.300 M NaOH NaOH \rightarrow Na+ + OH⁻ 0.300M 0.300M Kw = [H₃O⁺][OH-] [H₃O⁺] = Kw = 1.00 × 10⁻¹⁴ [OH-] - 300 = 3.33×10⁻¹⁴ [OH-] - 300 = 3.33×10⁻¹⁴

Find $[H_3O^+]$ in 0.020 M Ba(OH)₂

$$Ba(OH)_{2} \rightarrow Ba^{2+} + 20H$$

$$0.020M \qquad 0.020M$$

$$[H_{3}O^{+}] = Kw = \frac{1.00000^{14}}{0.04} = 2.5\times10^{13} M$$

