Which of the following is a stronger acid?
a) HIO_{3} or $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{H}_{2} \mathrm{O}_{2}$ or HSO_{3}^{-}
c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$or HCN

Equilibrium Constant for the Ionization of Water

- a solution can be classified as acidic, basic or neutral based on the relative concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}

$$
\begin{array}{cc}
\text { acidic } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]} \\
\text {neutral } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]} \\
\text {basic } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]}
\end{array}
$$

- even in the absence of acids or bases, pure water contains a very small amount of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}as a result of collisions between water molecules
- self-ionization can be represented as:

$$
59 \mathrm{~kJ}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- an equilibrium constant for this reaction can be written as:

$$
\mathrm{Keq}=\mathrm{Kw}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{1}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$K w=$ dissociation constant for water
In pure water, at $25^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-7} \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-7} \mathrm{M}}
\end{aligned}
$$

$$
\mathrm{Kw}=\left[1.00 \times 10^{-7} \mathrm{M}\right]\left[1.00 \times 10^{-7} \mathrm{M}\right]=1.00 \times 10^{-14}
$$

- the value of Kw only varies with temperature
- when Kw or the temperature is not stated, it can be assumed that $\mathrm{Kw}=1.00 \times 10^{-14}$
ex.
What $\left.1 \mathrm{HH}^{-}\right]$in $0.025 \mathrm{M} \mathrm{HCl}^{2}$?

$$
\begin{aligned}
& \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& 0.025 \mathrm{M}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \\
& 0.025 \mathrm{M} \\
& \mathrm{KW}_{\mathrm{H}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{KW}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right)}=\frac{1.00 \times 10^{-14}}{0.025} \\
& =4.0 \times 10^{-13} \mathrm{M}
\end{aligned}
$$

Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.300 M NaOH

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \mathrm{O} .300 \mathrm{O} \\
& \mathrm{KW}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{KW}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.00 \times 10^{-14}}{.300}=3.33 \times 10_{\mathrm{M}}^{-14}} \\
& \left.\mathrm{KW}=\left[\mathrm{Hh}_{2}\right)^{-}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \\
& 0.02 \mathrm{M} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{Kw}}{[\mathrm{OH+}]}=\frac{1.04 \mathrm{OM}}{0.04}=2.510^{-14}}
\end{aligned}
$$

