Equilibrium Expressions \& Equilibrium Constant

- when a system is at equilibrium, the [reactants] and [products] remains constant
- it is found that the ratio of [products] to [reactants] is constant at a particular temperature
- even though the [reactants] and [products] may change as a result of a shift in equilibrium, the ratio remains constant

For an equilibrium equation with the general form:

$$
\mathrm{aA}+\mathrm{bB} \underset{\mathrm{eE}}{\rightleftarrows}+\mathrm{fF}
$$

experimentally, it is found that:

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{E}]^{\mathrm{e}}[\mathrm{~F}]^{\mathrm{f}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}=\mathrm{a} \text { constant }
$$

- this expression of concentrations is called the EQUILIBRIUM EXPRESSION and its numerical value $\mathrm{K}_{\text {eq }}$ is called the EQUILIBRIUM CONSTANT
- the equilibrium constant is the ratio of product concentration terms to reactant concentration terms

$$
K_{\text {eq }}=\frac{[\text { PRODUCTS }]}{[\text { REACTANTS }]}
$$

- in the K_{eq} expression, the exponent to which each of the concentrations is raised is equal to its coefficient in the balanced reaction
- the units for $\mathrm{K}_{\text {eq }}$ vary depending on the number of concentration terms in the numerator as compared to the denominator
- these units do not have any particular importance so units for K_{eq} are generally not shown

Write the K_{eq} expression for the following equilibrium:

$$
\begin{aligned}
& 2 \mathrm{HI}(\mathrm{~g}) \underset{\mathrm{H}}{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \\
& \mathrm{Keq}_{\mathrm{e}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}=\frac{(120)(.120)}{\left(\mathrm{Keq}=\frac{290)^{2}}{0.230}\right.}}
\end{aligned}
$$

Given the above equilibrium, what is the value of $\mathrm{K}_{\text {eq }}$ if the equilibrium concentrations of $\mathrm{HI}, \mathrm{H}_{2}$ and I_{2} are $0.250 \mathrm{M}, 0.120 \mathrm{M}$ and 0.120 M respectively?

Consider the following equilibrium:

$$
2 \mathrm{HI}(\mathrm{~g}) \underset{\mathrm{H}}{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

If the value of $\mathrm{K}_{\mathrm{eq}}=0.230$ at a particular temperature, what is the equilibrium $[\mathrm{HI}]$ if the $\left[\mathrm{H}_{2}\right]$ $=0.075 \mathrm{M}$ and $\left[\mathrm{I}_{2}\right]=0.320 \mathrm{M}$?

$[\mathrm{HI}]=$

The following substances are not included in the equilibrium expression because their concentrations are essentially constant:

1. solids - cannot be compressed and hence their concentrations cannot be changed; concentration determined by density of the solid
2. pure liquids - cannot be compressed and hence their concentrations cannot be changed; however . . . if there are 2 or more liquids, they may mix and are no longer pure and the concentrations may change due to dilution; liquids are only pure if there is only one liquid present in the equilibrium expression

Write the K_{eq} expression for the following equilibrium:
a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g}) / \mathrm{Keg}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
b) $\mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The equilibrium constant, $K_{\text {eq }}$, is a ratio of $\frac{[P R O D U C T S]}{[\text { REACTANTS] }]}$, so numerically, if $K_{\text {eq }}$ is large the products are favoured and if $K_{\text {eq }}$ is small the reactants are favoured.

$$
\begin{gathered}
\text { Large } \mathrm{K}_{\text {eq }}=\frac{[\mathrm{PRODUCTS}]}{[\text { REACTANTS }]} \\
\text { Small } \mathrm{K}_{\text {eq }}=\frac{[\text { [PRODUCTS] }]}{[\text { REACTANTS }]}
\end{gathered}
$$

$\mathrm{K}_{\mathrm{eq}}>1$ then products GREATER THAN reactants $\mathrm{K}_{\mathrm{eq}}<1$ then products LESS THAN reactants

$$
\mathrm{K}_{\mathrm{eq}}=1 \text { products EQUAL reactants }
$$

Predict the relative amount of reactants \& products at equilibrium:
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g}) \Re$ favoured $\mathrm{K}_{\text {eq }}=6.3 \times 10^{-11}$
b) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{\text {eq }}=5 \times 10^{3}$
c) $\mathrm{Si}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SiO}_{2}(\mathrm{~s})$

$$
\mathrm{K}_{\mathrm{eq}}=2 \times 10^{-9}
$$ P favoured

Dependence of \mathbf{K}_{eq} on Temperature

- K_{eq} remains constant when concentration, pressure or surface area change
- however . . . changing the temperature affects the value of K_{eq}
Why???
- changing concentration, pressure or surface area changes the number of reacting molecules per litre
$>$ the equilibrium counteracts these stresses and shifts to re-establish a new equilibrium
$>$ the ratio of [PRODUCT]/[REACTANT] and the value of \mathbf{K}_{eq} remains the same
- changing temperature causes a shift in the equilibrium, but the number of reacting molecules does not change
> therefore the ratio of [PRODUCT]/
[REACTANT] changes and the value of \mathbf{K}_{eq} changes

> Varying temperature is the only factor that changes the value of K_{eq}.

Consider the reaction:

REACTANTS $\stackrel{\rightleftarrows}{\rightleftarrows}$ PRODUCTS $+\uparrow 76 \mathrm{~kJ}$

- for an exothermic reaction, an increase in temperature will cause a shift to the left
- the [PRODUCTS] decrease while the [REACTANTS] increase . . . and since

$$
K_{\mathrm{eq}}=\frac{[\text { PRODUCTS }]}{[\text { REACTANTS }]} \text { the value of } \mathbf{K}_{\mathrm{eq}} \text { decreases }
$$

- for an endothermic reaction, an increase in temperature will cause a shift to the right
- the [PRODUCTS] increase while the [REACTANTS] decrease and the value of \mathbf{K}_{eq} would increase

$\uparrow 76 \mathrm{~kJ}+$ REACTANTS \leftarrow PRODUCTS

K_{eq} increases when the temperature of an endothermic reaction is increased K_{eq} decreases when the temperature of an exothermic reaction is increased

Consider the following reaction:

energy $+\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Is the above reaction endothermic or exothermic if $\mathrm{K}_{\text {eq }}$ is 2.24 at $227^{\circ} \mathrm{C}$ and 33.3 at $487^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& K_{e q-}^{T} \cdot 2.24 @ 227^{\circ} \mathrm{C} \\
& \pi 33.3 @ 47^{\circ} \mathrm{C}
\end{aligned}
$$

