pH and pOH

- when working with dilute solutions of strong acids or weak acids (likewise with bases)
$>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is very small, often around 10^{-6} or smaller
$>$ with such small quantities, it is difficult to compare concentrations
> pH and pOH scales developed
- $\mathrm{pH}=$ negative logarithm of the molar concentration of hydronium ion
- $\mathrm{pOH}=$ negative logarithm of molar concentration of hydroxide ion

logarithm = the exponent to which 10 must be raised to represent a certain number

For example . . . $\log 100$ means 10 to the power of WHAT equals 100 ?

$$
\begin{aligned}
& \log 100=2 \text { because } 10^{2}=100 \\
& \log 1000=3 \quad 1000=10^{3} \\
& \log (0.01)=-2 \\
& 10^{-2}
\end{aligned}
$$

The reverse procedure of \log is called antilog.
Antilog is equivalent of raising 10 to the power of a certain exponent.

$$
\operatorname{antilog}(x)=10^{x}
$$

What is the antilog of 2 ?

$$
\operatorname{antilog}(2)=10^{2}=100
$$

Examples:
a) If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.67 \times 10^{-5} \mathrm{M}$, what is the pH ?

$$
\begin{aligned}
P H & =-\log \left[\mathrm{H}_{30^{+}}\right] \\
& =-\log \left(4.67 \times 10^{5}\right) \\
& =4331
\end{aligned}
$$

Note: in pH and pOH , only the numbers after the decimal are significant
b) If the $\left[\mathrm{OH}^{-}\right]=2.83 \times 10^{-6} \mathrm{M}$, what is the pOH ?

$$
\begin{aligned}
\mathrm{POH} & =-\log \left[\mathrm{OH}^{6}-\right] \\
& =5.548
\end{aligned}
$$

Consider the following:

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- if we want to rearrange the equation to solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, first remove the negative sign by multiplying both sides by -1 to give:

$$
-\mathrm{pH}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- since the reverse of log is antilog, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is taking the antilog, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can be determined by taking the antilog of both sides of the equation:

$$
\begin{gathered}
\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}\left(\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\operatorname{antilog}(-\mathrm{pH})=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}}
\end{gathered}
$$

- similarly, $\left[\mathrm{OH}^{-}\right]$can be determined from the pOH

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=10^{-\mathrm{pH}}} \\
& {\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})=10^{-\mathrm{pOH}}}
\end{aligned}
$$

Example:
a) If the pH is 3.17 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =10^{-3.17} \\
& =\text { antilog }-3.17
\end{aligned} \Rightarrow 6.8 \times 10^{-4} \mathrm{M}
$$

b) If the pOH is 5.32 , what is the $\left[\mathrm{OH}^{-}\right]$?

$$
\left.\begin{array}{rl}
{\left[\mathrm{OH}^{-}\right]} & =10^{-5.32} \\
& =\text { antilog }-5.32
\end{array}\right\} 4.8 \times 10^{-6} \mathrm{M}
$$

There is a simple but important relationship between $\mathrm{pH}, \mathrm{pOH}$ and Kw .

- starting with Kw :

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}
$$

- take the logarithm of both sides:

$$
\begin{gathered}
\log \left(\left[\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\right)=\log \mathrm{Kw}\right. \\
\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]=\log \mathrm{Kw}
\end{gathered}
$$

- multiply by -1 :

$$
\begin{gathered}
\left(-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)+\left(-\log \left[\mathrm{OH}^{-}\right]\right)=(-\log \mathrm{Kw}) \\
\mathrm{pH}+\mathrm{pOH}=\mathrm{pKw}
\end{gathered}
$$

${ }^{\circ} \mathrm{C}$

- at $25 \mathrm{Kw}=1.0 \times 10^{-14}$

$$
\mathrm{pH}+\mathrm{pOH}=-\log \left(1.0 \mathrm{X} 10^{-14}\right)=14.00
$$

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

- Using the following relationships, you can work back and forth from any of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH .
pH Calculations

- since the pH and pOH scales are logarithmic scales, a difference in one pH or pOH unit is equivalent to a ten-fold ($10 \times$) difference in concentration
$>\mathrm{pH}$ and pOH are the negative of the exponent, so low pH and pOH mean relatively high values of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ \& high values of pH and pOH mean relatively low $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

at $25^{\circ} \mathrm{C}$: $\quad \mathrm{pH}=7.0$ is neutral
$\mathrm{pH}<7.0$ is acidic
$\mathrm{pH}>7.0$ is basic (alkaline)

- negative pH values are possible for concentrated strong acids
$-\log 22.00 \mathrm{M} \mathrm{HCl}$ has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.00 \mathrm{~mol} / \mathrm{L}$

$$
\mathrm{pH}=-\log (2.00)=-0.30
$$

