Equilibrium Calculations

1. Calculating K_{eq} from equilibrium concentrations:

Consider the following equilibrium system:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

At 200°C, the concentrations of nitrogen, hydrogen and ammonia at equilibrium are measured and found to be $[N_2] = 2.12$, $[H_2] = 1.75$ and $[NH_3] = 84.3$. Determine the value of K_{eq} .

$$Keq = [NH_3]^2$$
 $[N_2][H_2]^3 = (84.3)^2$
 $= (2.12)(1.75)^3$

2. Calculating concentrations from K_{eq}:

The equilibrium concentrations of SO_2 and O_2 are each 0.0500M and $K_{eq} = 85.0$ at 25°C for the reaction:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Calculate the equilibrium concentration for SO₃ at this temperature.

$$Keq = [503]^2$$
 $[50_2]^2[0_2]$
 $[50_3]^2 = (Keq)(50_2]^2[0_2]$
 $[50_3]^2 = (85.0)(0.05)^2(0.05)$
 $[50_3]^2 = 0.010625$ $[50_3]_{eq} = 0.103M$

3. Calculating K_{eq} from initial concentrations:

Suppose that 4.00 moles of HI(g) is placed into a 2.00 L flask at $425^{\circ}C$ and reacts to produce H_2 and I_2 according to the equation:

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

At equilibrium the concentrations of H_2 and I_2 are found to each be 0.214 mol/L. Calculate the value of K_{eq} .

4. Calculating initial concentrations from K_{eq}:

A certain amount of NO₂(g) was placed into a 5.00L bulb and reacted according to the equation:

$$2NO(g) + O_2(g) \not\equiv 2NO_2(g)$$

When equilibrium was reached, the concentration of NO(g) was 0.800 M. If K_{eq} has a value of 24.0, how many moles of NO₂ were originally placed into the Keg = [NO_3]2 [NO]eg = 0.800M bulb?

			[ND]2[02]
I	0	0 20 =	2 NO269 - 2x
C	+2x 2x n 0.800N	+ X 710,400M	y-2x
			[NO ₂] ²

moles NO2: (3.279mol) (5,00L)

= [lb.4 mol]

[Notinitial = 4

5. Determining [equilibrium] from [initial]

 $K_{eq} = 3.5$ for the reaction:

$$SO_2(g) + NO_2(g) \not \supseteq SO_3(g) + NO(g)$$

If 4.0 mol of $SO_2(g)$ and 4.0 mol of $NO_2(g)$ are put into a 5.0 L bulb and allowed to come to equilibrium, what concentration of all species will exist at equilibrium? $SO_{2(g)} + NO_{2(g)} = SO_{3(g)} + NO_{2(g)}$

	502(9) +	NO2(9) =	503(g) +	NO(9)	
T	08014	0.801	0	O -	
		-X	+×	+x	
C		20-2	X	~	
E	0.80-2	0.80-2			

$$6eq = 3.5 = \frac{x^2}{(.80-x)}$$

$$1.87 = \frac{x}{.8-x}$$

$$1.87(.8-x) = x$$

$$1.496 = 2.87$$

$$1.496 = 2.87$$

6. Determining [equilibrium] after a shift

A 1.0 L reaction vessel contained 1.0 mol of SO₂, 4.0 mol of NO₂, 4.0 mol of SO₃ and 4.0 mol of NO at equilibrium according to the reaction:

$$SO_2(g) + NO_2(g) \not \supseteq SO_3(g) + NO(g)$$

If $3.0 \text{ mol of } SO_2$ are added to the mixture, what will the new concentration of NO be when equilibrium is re-established?

- for some problems, a numerical answer is NOT required but rather a DECISION must be made
 - > for example . . . which way will the reaction shift in order to reach equilibrium? OR
 - > how will the concentration of reactants and products change in order to reach equilibrium?
- for these decision type problems a reaction quotient (Q) or Trial K_{eq} is used

Consider the following equation:

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

the reaction quotient is:

$$Q = \frac{[NO_2]^2}{[NO]^2[O_2]}$$

- notice that the reaction quotient is the same as the equilibrium expression except that we will use initial concentrations to solve for Q
- our decision will be based on comparing the reaction quotient (Q) to the equilibrium constant (K_{eq})

If $Q = K_{eq}$, then the system is at EQUILIBRIUM and no shift will occur If $Q < K_{eq}$, then $\frac{[PRODUCTS]}{[REACTANTS]}$ is TOO SMALL and shift right, more PRODUCTS If $Q > K_{eq}$, then $\frac{[PRODUCTS]}{[REACTANTS]}$ is TOO BIG and shift left, more REACTANTS

7. Determining the direction of shift; Trial K_{eq} $K_{eq} = 49$ for the equilibrium:

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

If 2.0 mol of NO(g), 0.20 mol of $O_2(g)$ and 0.40 mol of NO₂(g) are put into a 2.0 L bulb, which way will the reaction shift in order to reach equilibrium? Support your answer with the appropriate calculations.

[02] = 0.70md = 0.10M

[NO] = 0.40ml 0.20M

$$Q = \frac{(0.70)^7}{(1.9)^2(.10)} = 0.4$$