Acid & Base Equilibrium Constants

- weak acids and weak bases can be represented as equilibrium systems because they do not completely ionization
 - > the **acid ionization** reaction of a **weak acid** (such as CH₃COOH) with water is shown by:

$$CH_3COOH(aq) + H_2O(l) \leq CH_3COO(aq) + H_3O(aq)$$

• An equilibrium expression can be written for the ionization as:

$$Ka = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = 1.8 \times 10^{-5}$$

- the value of Ka is the acid ionization constant
- the greater the value of Ka, the stronger the acid
- larger Ka value indicates the equilibrium favours the products; they are therefore stronger because of greater ionization
- Ka values for STRONG acids are not listed since these acids are 100% ionized and the concentration of the denominator is therefore ZERO

• the base ionization reaction of a weak base such as NH₃ with water is shown by:

$$NH_3(aq) + H_2O(\mathcal{L}) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

• the equilibrium expression for the ionization is:

Kb =
$$\frac{[NH_4^+][OH^-]}{[NH_3]}$$
 = 1.8 x 10⁻⁵

- the value of Kb is called the base ionization constant
- the greater the Kb value, the stronger the base
- Kb values must be calculated using the Ka values of the conjugate acids

- there is an important relationship that exists between Ka and Kb for conjugate acid-base pairs; consider the following
 - \rightarrow the acid NH₄⁺ has the <u>acid ionization equation:</u>

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$

> the acid ionization expression:

$$Ka = \frac{[NH_3][H_3O^+]}{[NH_4^+]} =$$

> the conjugate base NH₃ has the <u>base ionization</u> equation:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

> and the base ionization expression

$$Kb = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

> when Ka and Kb are multiplied together we get:

$$Ka \times Kb = \frac{[NH_3][H_3O^+]}{[NH_4^+]} \times \frac{[NH_4^+][OH^-]}{[NH_3]} = [H_3O^+][OH^-]$$

 \rightarrow and since $[H_3O^+][OH^-] = Kw$

$$Ka \times Kb = Kw$$

(at 25°C Kw = 1.00 x 10⁻¹⁴)

Calculate the Kb for $C_2O_4^{2-}$

- *Note that all Brønsted-Lowry reactions in Chem 12 will only involve transfer of a single proton
- if solutions containing amphiprotic ions are mixed, the stronger of the two acids will donate a proton to the other
- ex. HCO_3^- (Ka = 5.6 x 10⁻¹¹) & $H_2PO_4^-$ (Ka = 6.2 x 10⁻⁸), since $H_2PO_4^-$ has a larger Ka, it will donate a proton to HCO_3^-

$$HCO_3^{-} + H_2PO_4^{-} \rightleftarrows H_2CO_3 + HPO_4^{-2}$$

- the position of an equilibrium depends on the strengths of the acids
- ex. H_2CO_3 (Ka = 4.3 x 10^{-7}) is a stronger acid than HSO_3^- (Ka = 1.0 x 10^{-7})
 - > H₂CO₃ has a greater tendency to donate protons; there will be more products than reactants (products are favoured)

$$H_2CO_3 + SO_3^{2-} \leftarrow HCO_3^- + HSO_3^-$$

Weaker acids and bases are favoured in an equilibrium.