Predict whether the following are acidic, basic or neutral in solution:

a) $Ba(NO_3)_2$ Neutra D b) NaHSO₃ $K_{b} = K_{w} = \frac{1}{10^{-14}}$ $K_{a} = \frac{1}{10^{-14}}$ $K_{a} = \frac{1}{10^{-14}}$ · 1.0×10⁺ -13 - 6.7×10 c) Na₃PO₄

Calculations involving Ka & Kb

1. Calculations involving Ka:

- when a weak acid (HA) is put into water, some of the acid ionizes
- therefore, a certain amount of H_3O^+ is produced
- the smaller the Ka, the less H_3O^+ produced
- many of these problems require an ICE table

A - Using initial [acid] & Ka to determine $[H_3O^+]$ or pH (H_3O^+)

ex. Calculate the pH of a 0.75 M acetic acid solution. ution. $(H_2CODH + H_2) \rightleftharpoons H_3O^+ + CH_2COO^ 0.75 \swarrow + \chi + \chi + \chi$ $-\chi \qquad \chi \qquad \chi$ Ka=[H30+][CH3COD] H2COOH7 - | - 8×10-5 Ka= <u>×</u>2 $\chi^{2} = (0.75)(1.8\times10^{-5})$ $= \sqrt{(0.75)(1.8\times10^{-5})}$ = 0.003.6743 $= [H_{3}0^{+}]$ make *ran onl assumption >1000×F = - log [H307] = - log (.00367-13)

B - Calculating Ka from [H₃O⁺] or pH.

ex. If the pH of 0.100 M HCOH₂ is 2.38 at 25°C, calculate Ka.

C - Finding the initial concentration of a weak acid. Salt ex. What mass of NH₄Cl will produce 1.50 L of a solution having pH of 4.75? NH4CI -> NH2+ + CK $\frac{1}{1.778\times10^{-5}} + \frac{1}{2.778} + \frac{1}{2.0^{-5}} + \frac{1}{2.778} + \frac{1$ -X-1778M $K_{a} = \frac{[NH_3][H_30^+]}{[NH_4^+]} = 5.6 \times 10^ LNH4^{+}$ H = 4.75 $(-778 \times 10^{5}) = 3.6 \times 10^{-4.75}$ $Ka = (-778 \times 10^{5}) = 5.6 \times 10^{-5}$ $(-1.778 \times 10^{-5}) = (-778 \times 10^{-5})^{-2}$ $(-778 \times 10^{-5}) = (-778 \times 10^{-5})^{-2}$ $(-778 \times 10^{-10}) = (-778 \times 10^{-5})^{-2}$ $\mathcal{X} = \left(\frac{1.778 \times 10^{-5}}{5.6 \times 10^{-10}}\right)^2 + 1.778 \times 10^{-5}$ X=05645M=[NH4]=[NH4C] JNH4ci (0.5645mol) (1.56) 53.5g

2. Calculations involving Kb

- calculations involving weak bases are similar to the calculations involving weak acids with two important differences:
 - 1. the Kb value must be calculated
 - the resulting solution will be basic, not acidic, which means using the [OH⁻] rather than [H₃O⁺]

A - Using initial concentration of base and Kb to determine pH

ex. Calculate the pH of a 0.10 M NaCN solution. $NaCN \rightarrow NaC^{+} + CN^{-}$

B - Calculating Kb from pOH or pH

ex. The pH of a 0.50 M solution of the weak base NaB is 10.64. What is Ka for the conjugate acid HB² \sim 0 \rightarrow 12 \neq 1

 $^{HB?}NGB \rightarrow Na^{+} + B$ $\begin{array}{c} B + H_2 O = HB + 0H^{-1} \\ \hline I & 0.50 \\ C - 4365 \times 10^{-9} \\ \hline E & 0.4996 \end{array} + 4365 \times 10^{-9} \\ 4.365 \times 10^{-9} \\ \hline HB + 0H^{-1} \\ \hline HB$ pH = 10.64 pOH = 14 - 10.64 pOH = 3.36 [OH =] = antipg = 3.36 $= 4.365 \times 10^{-4}$ KP=[HB][OH-] (4.365×10-4)2 .4996 Kb = 3.8139×107 $Ka = \frac{Kw}{Kb} = \frac{1 \times 10^{-14}}{3.8139 \times 10^{7}} = 2.6219 \times 10^{-8}$