Predict whether the following are acidic, basic or neutral in solution:
a) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\rightarrow B a^{2+}+29 O_{3}^{-}
$$

neutral
b) NaHSO_{3} \qquad

$$
=\frac{K_{w}}{K_{\left(H_{2} S_{3}\right)}}=\frac{I_{\times 10^{-14}}}{65 \times 10^{-2}}=6.7 \times 10^{-13}
$$

Calculations involving Ka \& Kb

1. Calculations involving Ka:

- when a weak acid (HA) is put into water, some of the acid ionizes
- therefore, a certain amount of $\mathrm{H}_{3} \mathrm{O}^{+}$is produced
- the smaller the Ka , the less $\mathrm{H}_{3} \mathrm{O}^{+}$produced
- many of these problems require an ICE table

A - Using initial [acid] \& Ka to determine $\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]$or $\mathbf{~ p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$ ex. Calculate the pH of a 0.75 M acetic acid solution.

$$
\left(\widetilde{K}^{0.7}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}\right]}{[\mathrm{CH} 3 \mathrm{COOH}]}=1.8 \times 10^{-5}\right.
$$

$\begin{aligned} & \text { assume } \\ & 0.75-x \approx 0.75 \\ & \text { *(an only make }\end{aligned}$ Ka= $\frac{x^{2}}{0.75}=1.8 \times 10^{-5}$
assumption If

$$
[]>1000 \times K
$$

$$
\begin{aligned}
\mathrm{PH} & =-\log \left[\mathrm{H}_{3} \circ^{+}\right] \\
& =-\ln \alpha(.00367
\end{aligned}
$$

$$
=-\log (.0036743)
$$

$$
\begin{aligned}
& x^{2}=(0.75)(1.8 \times 10 \\
&= \sqrt{(0.75)\left(1.8 \times 10^{-5}\right)} \\
&=0.003 .6743^{m} \\
&=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

$$
=2.43
$$

B - Calculating Ka from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\mathbf{p H}$.
ex. If the pH of $0.100 \mathrm{M} \mathrm{HCOH}_{2}$ is 2.38 at $25^{\circ} \mathrm{C}$, calculate Ka.

$$
\begin{aligned}
& \mathrm{HCOH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\theta}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\theta}{\mathrm{COH}_{2}} \\
& \begin{array}{lll}
I=0.100 \\
C=0.00416 \\
E .09584
\end{array} \begin{array}{cc}
+.00416 & +.00416 \\
.00416 & .00416
\end{array} \\
& K a=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{COH}_{2}\right]}{\left[\mathrm{HCOH}_{2}\right]}=?=\frac{(.00416)\left(.004161_{1}\right.}{.09584} \\
& p H=2.38
\end{aligned}
$$

C - Finding the initial concentration of a weak acid.

Salt
ex. What mass of $\mathrm{NH}_{4} \mathrm{Cl}$ will produce 1.50 L of a solution having pH of 4.75 ?

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-} \\
& \xrightarrow[X]{\mathrm{NH}} \mathrm{Cl}^{+}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \underset{\rightarrow}{\mathrm{NH}_{3}}+\underset{-}{\mathrm{H}_{3} \mathrm{O}^{+}} \\
& I_{C-6778 \times 10^{-5}}^{X}+1.778 \times 10^{-5}+1.778 \times 10^{-5} \\
& 1.778 \times 10^{-5} \quad 1.778 \times 10^{-5} \\
& K a=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& x=\left[\frac{\left(1.778 \times 10^{-5}\right)^{2}}{5.6 \times 10^{-10}}\right]+1.778 \times 10^{-5} \\
& x=0.5645 \mathrm{M}=\left[\mathrm{NH}_{4}{ }^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right. \\
& G_{N \text { Hemic }}=\left(0.8845 \frac{\mathrm{~mol}^{\mathrm{m}}}{k}\right)(1.5 \mathrm{~L})\left(\frac{53.5 \mathrm{~g}}{\mathrm{~mol}}\right) \\
& =45 \mathrm{~g} .
\end{aligned}
$$

2. Calculations involving Kb

- calculations involving weak bases are similar to the calculations involving weak acids with two important differences:

1. the Kb value must be calculated
2. the resulting solution will be basic, not acidic, which means using the $\left[\mathrm{OH}^{-}\right]$rather than $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

A - Using initial concentration of base and Kb to determine pH
ex. Calculate the pH of a 0.10 M NaCN solution.
$\mathrm{NaCN} \rightarrow \mathrm{Da}^{+}+\mathrm{CN}$

$2.04 \times 10^{-5}=\frac{x^{2}}{0.10}$

$$
\begin{aligned}
K b & =\frac{K w}{K a(1+1 \times N)} \\
& =\frac{1 \times 10^{-14}}{4.9 \times 10^{-10}}
\end{aligned}
$$

$$
\left.x=\sqrt{(2.10} 04 \times 10^{5}\right)(.10) ~ K b=2.04 \times 10^{-5}
$$

$$
x=1.43 \times 10^{-3} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

$\mathrm{POH}=-\log [\mathrm{OH}-]$
$\therefore \log \left(1.43 \times 10^{-3}\right)$

$\mathrm{PH}=14-\mathrm{POH}$
$-14-2.845$

B - Calculating Kb from $\mathbf{p O H}$ or $\mathbf{p H}$
ex. The pH of a 0.50 M solution of the weak base NaB is 10.64 . What is Ka for the conjugate acid

$$
\begin{aligned}
& { }^{\mathrm{HB}} \mathrm{NaB} \rightarrow \mathrm{Na}^{+}+\mathrm{B}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
I \\
C-4.50 .5 \times 10^{-4} \\
C+4365 \times 10^{11}+436 \times 10^{-4}
\end{array} \\
& \text { E } 0.4996\} \quad 4.365 \times 10^{4} 4.365 \times 10^{-4} \\
& \begin{array}{l}
\mathrm{Kb}=\frac{[\mathrm{HB}][\mathrm{OH}]}{\left[\mathrm{B}^{-}\right]-19} \\
K b=\frac{\left(4.365 \times 10^{-4}\right)^{2}}{.4996}
\end{array} \\
& \mathrm{PH}=10.64 \\
& \begin{array}{l}
\mathrm{PH}=14-10.64 \\
\mathrm{POH}=3.36
\end{array} \\
& \mathrm{POH}=3.36 \\
& \text { [} \mathrm{OH}^{-} \text {]: antipg-3.36 } \\
& =4.365 \times 10^{-4} \\
& K a=\frac{K w}{K b}=\frac{1 \times 10^{-14}}{3.8139 \times 10^{-7}} \\
& =2.6219 \times 10^{-8} \\
& 2.6 \times 10^{-8} \\
& \text { Ka }
\end{aligned}
$$

