Redox Review

Define oxidation and reduction.

Leo Ger: lose electron oxidation; gain electron reduction

Explain what a redox reaction is.

When electrons are transferred between 2 species; usually from chemical potential to electrical kinetic. Oxidation# +/ -

3. Cu2+ reacts spontaneously with Al to produce Cu and Al3+. Write the oxidation half reaction, the reduction half reaction, and the net ionic redox reaction. Label the oxidizing agent and reducing agent.

 $AI_{(S)} + Cu^{2+}_{(aq)} < -> AI^{3+}_{(aq)} + Cu_{(s)}$

O/RA + R/OA

4. Using your table, write the half reactions and complete redox reaction when acidified BrOs reacts with H2S gas. Label the oxidizing agent and reducing agent. Is this reaction spontaneous?

 $3H_2S_{(aq)}^+ HBrO_3^-_{(aq)} <-> HBr_{(aq)} + 3S_{(s)} + 3H_2O_{(l)}$

O/RA + R/OA

Give the oxidation numbers for each of the following substances:

a) MnO₁ b) H₂SO₃ c) Fe₃O₄ d) BaCr₂O₇ e) C₃H₈ f) HClO₄

X=7

x=4

x = 8/3

x=6

x=3

x=7

x=0

Are the following reactions redox? State why or why not.

a) BaCl₂ + Na₂SO₄ ⇒ BaSO₄ + 2NaCl

NO change in oxidation #

b) $2Na + MgBr_2 \Rightarrow Mg + 2NaBr$

7. What metal can be oxidized by acidified MnOr but not by acidified BrOs?

Au- see position on table

8. Which is the stronger reducing agent: H₂O₂ or Ni? How do you know?

Ni- see position on table

Which substance can be reduced by I but not by Fe^{2*}?

MvO₄ - see position on table

10. If the following reactants are mixed, will the reaction be spontaneous, non spontaneous, or will there be no reaction at all? If spontaneous, write a balanced redox equation:

a) Cu2+ and Ag2S

b) K^{*} and Sn^{2*}

c) AuClc and Al

NSp-same side

NSp-RA above OA

Sp- OA above RA

Balance the following and calculate the E* at :

 $Mn^{2+} + ClO_{\ell} \Rightarrow MnO_{\ell} + Cl$ (acidic)

O/RA. +. R/OA

O: $(Mn^{2+}_{(aq)} + 4H_2O_{(I)} < -> MnO_{2(s)} + 8H + + 6e-) 4$ R: $(ClO_4^-(aq) + 8H^+ + 8e^- < -> Cl^-(aq) + 4H_2O_{(1)}) 3$ $4Mn^{2+}_{(aq)} + 3ClO_{4(aq)}^{-} + 4H_2O_{(I)} <-> 4MnO_{2(s)} + 3Cl^{-}_{(aq)} + 8H^{+}$

12. Balance the following half reaction:

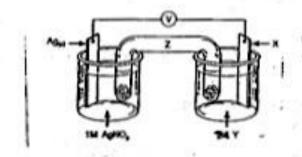
 $H_2BO_3 \Rightarrow BH_4$ (basic)

O: $H_2BO_3^-_{aq)} + 8H^+ <-> BH_4^-_{(aq)} + 3H_2O_{(I)}) + 6e H_2BO_3^-aq) + 5H_2O_{(I)} <-> BH_4^-(aq) + 8OH^- + 6e^-$

13. Write an oxidation half reaction, reduction half reaction, and overall redox equation for the skeleton redox reaction in basic solution:

$$Ag^* + C_6H_4(OH)_2 \Rightarrow Ag + C_6H_4O_2$$

BONUS: Add peroxide!


14. In an unusual compound, IPO₄, iodine exists as iodine (III). The compound decomposes as in the following skeleton redox reaction:

O: $(2IPO_4^{-}(aq) + 4H_2O_{(1)} < -> 6H+ + 3e- +2PO_4^{3-}(aq)) = 4$ R: $(IPO_4^{-}(aq) + 4e^{-} < -> IO_3(aq) + PO_4^{3-}(aq) = 3$ $12H_2O_{(1)} + 10IOP_4(aq) < -> 3I_{2(s)} + 10PO_4^{3-}(aq) = 24H^* + 4IO_3^{-}(aq)$

- In a titration, 28.55mL of acidified 0.0500M KMnO₄ is required to oxidize a 10.00mL sample of Cr³⁺. Write the balanced redox reaction and calculate [Cr³⁺].
- In a redox titration, 0.300g of Na₂C₂O₄ is placed into a 250mL flask and acidified. The resulting solution requires 23.42mL of KMnO₄ to reach the endpoint. The reaction is

$$5C_2O_4^2 + 2MnO_4 + 16H^* \Rightarrow 10CO_2 + 2Mn^2 + 8H_2O$$

Using the above data, calculate [KMnO₄].

17. The electrochemical cell below produces an initial voltage of 0.93V.

- a) Identify X.
- b) Identify a suitable electrolyte Y
- c) Identify a suitable electrolyte Z
- d) Indicate on the diagram the direction of electron flow.
- 18. Draw and label a diagram of a cell capable of producing Br2 from molten NaBr. Label the anode and cathode, then indicate at which electrode Br2 is produced.