MULTIPLE CHOICE:

1. In the following equation,

$$
\mathrm{HF}+\mathrm{NO}_{2}^{-} \Leftrightarrow \mathrm{HNO}_{2}+\mathrm{F}^{-}
$$

the HF is a Brönsted-Lowry
A. acid accepting protons
B. base accepting protons
C. acid donating protons
D. base donating protons
2. The conjugate base of $\mathrm{HSO}_{3}^{-}(a q)$ is
A. $\mathrm{H}_{2} \mathrm{SO}_{3(a q)}$
B. $\mathrm{HSO}_{3} \mathrm{OH}_{(l)}$
C. $\mathrm{SO}_{3(g)}$
D. $\mathrm{SO}_{3}{ }^{2-}(a q)$
3. In the following equation

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{HN}^{+} \Leftrightarrow \mathrm{N}_{2} \mathrm{H}_{5}^{+}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}
$$

a conjugate acid-base pair is
A. $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$
B. $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
C. $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$and $\mathrm{N}_{2} \mathrm{H}_{4}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$and $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$
4. In the equation

$$
\mathrm{ClO}_{4}^{-}+\mathrm{HNO}_{3} \rightarrow \mathrm{HClO}_{4}+\mathrm{NO}_{3}^{-}
$$

the order, from left to right, for Brönsted-Lowry acids and bases is
A. acid + base \Leftrightarrow base + acid
B. acid + base \Leftrightarrow acid + base
C. base + acid \Leftrightarrow base + acid
D. base + acid \Leftrightarrow acid + base
5. The equation showing the acid form of an indicator reacting with a basic solution is
A. $\mathrm{In}_{(a q)}^{-}+\mathrm{OH}_{(a q)}^{-} \Leftrightarrow \mathrm{HIn}_{(a q)}$
B. $\mathrm{HIn}_{(a q)}+\mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{In}_{(a q)}^{-}$
C. $\mathrm{In}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \Leftrightarrow \mathrm{HIn}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)}$
D. $\mathrm{HIn}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{In}^{-}(a q)$
6. Note the following reactions involving water

$$
\left.\begin{array}{l}
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{HBr}_{(a q)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Br}_{(a q)}^{-} \\
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CN}^{-}(a q)
\end{array} \Leftrightarrow \mathrm{HCN}_{(a q)}+\mathrm{OH}_{(a q)}^{-}\right)
$$

Because of this behaviour, water is classified as
A. neutral
B. a salt
C. amphiprotic
D. a solvent
7. 0.200 moles of hydrogen chloride gas (HCl) is dissolved in water and made up to a volume of 4.00 L of solution. What is the molarity of the $\mathrm{H}_{3} \mathrm{O}^{+}$ion?
A. 0.200 M
B. 20.0 M
C. $5.00 \times 10^{-2} \mathrm{M}$
D. $1.37 \times 10^{-3} \mathrm{M}$
8. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in an aqueous solution of $2.0 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ (strong base) is
A. $5.0 \times 10^{-12} \mathrm{M}$
B. $5.0 \times 10^{-3} \mathrm{M}$
C. $2.0 \times 10^{-12} \mathrm{M}$
D. $5.0 \times 10^{-11} \mathrm{M}$
9. Given:

$$
\mathrm{HPO}_{4}{ }^{2-}{ }_{(a q)}+\mathrm{NH}_{4}^{+}(a q) \Leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }_{(a q)}+\mathrm{NH}_{3(a q)}
$$

the strongest acid in the above equation is
A. $\mathrm{NH}_{4}{ }^{+}$
B. $\mathrm{HPO}_{4}{ }^{2-}$
C. NH_{3}
D. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
10. Which of the following gases will give the most basic solution on dissolving in water?
A. $\mathrm{H}_{2} \mathrm{~S}_{(g)}$
B. $\mathrm{NH}_{3(\mathrm{~g})}$
C. $\mathrm{CO}_{2(g)}$
D. $\mathrm{SO}_{2(\mathrm{~g})}$
11. A formula for a salt is
A. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
D. $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
12. The salt which will undergo hydrolysis in water is
A. $\mathrm{K}_{2} \mathrm{I}^{+}$
B. KNO_{3}
C. KCN
D. KCl
13. Which of the following equations best illustrates the hydrolysis of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
A. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{Na}_{2} \mathrm{O}_{(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $\mathrm{CO}_{3}{ }^{2-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HCO}_{3}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$
C. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)} \rightarrow 2 \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{CO}_{3}{ }^{2-}{ }_{(a q)}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{Na}_{2} \mathrm{CO}_{4(a q)}+\mathrm{H}_{2(g)}$
14. Which of the expressions given below illustrates a correct expression for pH ?
A. $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
B. $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}$
C. $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
D. $-\log \left(1 /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
15. What is the hydronium ion concentration, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, of a 0.00100 M sodium hydroxide (NaOH) solution?
A. $1.00 \times 10^{-3} \mathrm{M}$
B. 11.0 M
C. $1.00 \times 10^{-11} \mathrm{M}$
D. 0.00100 M
16. What is the pH of a 0.00100 M perchloric $\left(\mathrm{HClO}_{4}\right)$ acid solution?
A. 0.00100
B. 1.00×10^{-3}
C. 3.00
D. 13.0
17. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a hydrochloric acid solution is $1.00 \times 10^{-3} \mathrm{M}$. What is the pOH of the solution?
A. 3.00
B. 11.0
C. 0.00100
D. 1.0×10^{-3}
18. Which of the following equations represents an acid-base titration?
I. $\quad \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)}^{-}+\mathrm{H}^{+}(a q)+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}{ }_{(a q)}$
II. $\quad \mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}$
III. $\quad 3 \mathrm{Cu}_{(s)}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+8 \mathrm{H}^{+}{ }_{(a q)} \rightarrow 3 \mathrm{Cu}^{2-}(a q)+2 \mathrm{NO}_{(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$
IV. $\mathrm{Ag}^{+}(a q)+\mathrm{Br}^{-}(a q) \rightarrow \mathrm{AgBr}_{(s)}$
A. I
B. II
C. III
D. IV
19. 100 mL of a 0.100 M NaOH solution are titrated with 200 mL of a 0.0500 M HCl solution. The approximate pH of the resulting solution is
A. 5.00
B. 6.00
C. 7.00
D. 8.00
20. During a titration reaction 80.0 mL of a 0.100 M HCl solution are added to 100.0 mL of a 0.100 M NaOH solution. The $\left[\mathrm{OH}^{-}\right]$of the resulting solution is
A. 11.1 M
B. 1.11×10^{-2}
C. $11.11 \times 10^{-1} \mathrm{M}$
D. $1.11 \times 10^{2} \mathrm{M}$
21. Given that
and

$$
\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$$
\mathrm{K}_{a}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$\left[\mathrm{NH}_{3}\right]$
the correct relationship between these expressions is
A. $\mathrm{K}_{w}=\mathrm{K}_{a} \times \mathrm{K}_{b}$
B. $\mathrm{K}_{w}=\frac{\mathrm{K}_{a}}{\mathrm{~K}_{\mathrm{b}}}$
C. $\mathrm{K}_{w}=\frac{1}{\mathrm{~K}_{a} \times \mathrm{K}_{b}}$
D. $\mathrm{K}_{w}=\frac{\mathrm{K}_{b}}{\mathrm{~K}}$
22. An aqueous solution of aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, is in equilibrium with its conjugate acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$. If the numerical value of K_{b} for aniline is 4.30×10^{-10}, the value of K_{a} for its conjugate acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}$ is
A. 4.30×10^{4}
B. 2.3×10^{-5}
C. 5.38×10^{-10}
D. 4.30×10^{-10}
23. An aqueous solution of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, is in equilibrium with its conjugate base, $\mathrm{CH}_{3} \mathrm{COO}^{-}$. If the numerical value of K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.80×10^{-5}, the value of K_{b} for its conjugate base, $\mathrm{CH}_{3} \mathrm{COO}^{-}$is
A. 1.80×10^{-5}
B. 5.56×10^{-10}
C. 3.24×10^{-10}
D. 1.80×10^{9}
24. Given that

$$
\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)} \quad \mathrm{K}_{b}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}
$$

The equilibrium concentration of an ammonia $\left(\mathrm{NH}_{3}\right)$ solution is 0.500 M . The pOH of the solution is
A. 11.5
B. 8.95
C. 2.52
D. 2.00

ACID/BASE REVIEW

25. Which one of the following equations contains a conjugate acid-base pair from which a buffer solution can be prepared?
A. $\mathrm{HCN}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{CN}^{-}{ }_{(a q)}$
B. $\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}$
C. $\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{NO}_{3}^{-}(a q)$
D. $\mathrm{HClO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{ClO}_{4}^{-}(a q)$
26. Which one of the following equations contains a conjugate acid-base pair from which a buffer solution can be prepared?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$
C. $\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}$
D. $\mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{I}^{-}$
27. In the equation $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$, how does the $\mathrm{H}_{2} \mathrm{O}$ act?
A. As a Brönsted-Lowry acid donating protons.
B. As a Brönsted-Lowry acid accepting protons.
C. As a Brönsted-Lowry base donating protons.
D. As a Brönsted-Lowry base accepting protons.
28. Which one of the following is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$?
A. $\mathrm{HPO}_{4}{ }^{2-}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{PO}_{4}{ }^{3-}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$
29. Which one of the following is the correct order for the Brönsted acids or bases in the equation

$$
\mathrm{HSO}_{3}^{--}+\mathrm{HPO}_{4}^{-} \Leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{SO}_{3}{ }^{2-}
$$

A. acid + base \Leftrightarrow acid + base
B. acid + base \Leftrightarrow base + acid
C. base + acid \Leftrightarrow acid + base
D. base + acid \Leftrightarrow base + acid
30. Which of the following is the weakest acid?
A. 0.010 M HCl
B. 0.10 M HBr
C. 0.10 M HI
D. 0.10 M HF

ACID/BASE REVIEW

31. Which one of the following equation shows the basic form of an indicator HIn reacting in an acidic solution?
A. $\mathrm{In}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \Leftrightarrow \mathrm{HIn}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $\mathrm{HIn}_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \Leftrightarrow \mathrm{H}_{2} \mathrm{In}^{+}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $\mathrm{In}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HIn}_{(a q)}+\mathrm{OH}_{(a q)}^{-}$
D. $\mathrm{HIn}_{(a q)}+\mathrm{OH}^{-}(a q) \Leftrightarrow \mathrm{In}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
32. The indicator methyl red has a K_{a} value of 4.00×10^{-6}. If a $1.00 \times 10^{-3} \mathrm{M}$ solution of the indicator is used, what will be the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at the end point, where the colour is orange (i.e. intermediate between red and yellow)?
A. $4.00 \times 10^{-9} \mathrm{M}$
B. $4.00 \times 10^{-6} \mathrm{M}$
C. $2.00 \times 10^{-3} \mathrm{M}$
D. $4.00 \times 10^{-3} \mathrm{M}$
33. Which one of the following salts will show the greatest amount of hydrolysis in water if equal concentrations are used?
A. NaI
B. NaNO_{2}
C. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
34. Which one of the following sets shows the order of increasing pH of the aqueous solutions of the three salts if equal concentrations are used?
A. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
B. $\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}$
35. Which one of the following statements about HNO_{3} and HNO_{2} is TRUE, given that HNO_{3} is a stronger acid than HNO_{2}
A. NO_{2}^{-}ion is a stronger base than $\mathrm{NO}_{3}{ }^{-}$ion.
B. $\mathrm{NO}_{3}{ }^{-}$ion is a better proton acceptor than $\mathrm{NO}_{2}{ }^{-}$ion.
C. The bond between H and O in undissociated HNO_{3} is stronger than the bond between H and O in undissociated HNO_{2}.
D. A solution of $1 \mathrm{M} \mathrm{HNO}_{3}$ contains fewer particles than a solution of $1 \mathrm{M} \mathrm{HNO}_{2}$ if equal volumes are compared.

ACID/BASE REVIEW

36. What is the hydronium ion concentration, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, of a solution whose pH is 6.00 ?
A. $1.0 \times 10^{-8} \mathrm{M}$
B. $1.0 \times 10^{-6} \mathrm{M}$
C. 6.0 M
D. $1.0 \times 10^{6} \mathrm{M}$
37. What is the pOH of a 0.012 M solution of sodium hydroxide, NaOH ?
A. 1.03
B. 1.9
C. 1.92
D. 12.08
38. What is the pH of the solution which results when 100.0 mL of a 0.050 M solution of NaOH is titrated with 200.0 mL of a 0.025 M solution of HCl ?
A. 6.00
B. 7.00
C. 8.0
D. 9.00
39. During the titration of 50.0 mL of a 0.200 M KOH solution with $0.200 \mathrm{M} \mathrm{HNO}_{3}, 20.0 \mathrm{~mL}$ of the HNO_{3} is added. What is the pH at this point of the titration?
A. 0.92 .
B. 1.07
C. 12.93
D. 13.08
40. In which of the following buffer solutions will addition of $\mathrm{H}_{3} \mathrm{O}^{+}$cause the equilibrium to shift to the left?
I. $\quad \mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
II. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \Leftrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
III. $\quad \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O}$
IV. $\mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
A. I only.
B. II only.
C. III and IV only
D. I, III and IV.

Refer to the following information when answer in questions 41 and 42.

$$
\begin{gathered}
\mathrm{HNO}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2^{-}(a q)} \\
\mathrm{K}_{a}\left(\mathrm{HNO}_{2}\right)=5.1 \times 10^{-4}
\end{gathered}
$$

41. What is the pH of an aqueous solution of nitrous acid, HNO_{2}, when its equilibrium concentration is $1.0 \times 10^{-3} \mathrm{M}$?
A. 3.00
B. 3.15
C. 6.00
D. 6.29
42. What is K_{b} for the nitrite ion, NO_{2}^{-}, the conjugate base of nitrous acid?
A. 2.0×10^{-11}
B. 5.1×10^{-4}
C. 2.0×10^{-3}
D. 2.2×10^{-2}
43. Which one of the following statements explains why oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is useful as a primary standard in acid-base titrations?
A. It contains two replaceable hydrogen ions.
B. It can be obtained very pure, and is a crystalline solid.
C. It has a large K_{a} and so gives better results in titrations.
D. A stoichiometric point of its titrations is on the basic side of neutral pH 7 , which is better for titrations involving strong bases.
44. What is the pH of a 0.0025 M solution of lime water, $\mathrm{Ca}(\mathrm{OH})_{2}$?
A. 2.30
B. 2.60
C. 11.40
D. 11.70
45. Which one of the following equations contains the conjugate acid-base pair from which a buffer solution can be prepared?
A. $\mathrm{HI}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{I}_{(a q)}^{-}$
B. $\mathrm{HBr}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Br}^{-}{ }_{(a q)}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HSO}_{4}^{-}{ }_{(a q)}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}^{-}{ }_{(a q)}$
46. Which one of the following equations could represent a titration reaction?
A. $\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}$
B. $2 \mathrm{HBr}_{(a q)}+\mathrm{Cl}_{2(g)} \rightarrow 2 \mathrm{HCl}_{(a q)}+\mathrm{Br}_{2(a q)}$
C. $\mathrm{KHCO}_{3(a q)}+\mathrm{HBr}_{(a q)} \rightarrow \mathrm{KBr}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(g)}$
D. $3 \mathrm{Zn}_{(s)}+2 \mathrm{NO}_{2(a q)}+3 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{Zn}^{2+}(a q)+2 \mathrm{NO}_{(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$
47. The following equation represents the dissociation of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, in water:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}
$$

Which one of the following is the expression for the K_{a} of acetic acid?
A. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
B. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
$\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
C. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
D. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
48. Which one of the following species is the weaker base in the equation

$$
\mathrm{H}_{2} \mathrm{O}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HO}_{2}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \text { ? }
$$

A. $\mathrm{HO}_{2}^{-}{ }_{(a q)}$
B. $\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $\mathrm{H}_{2} \mathrm{O}_{2(a q)}$
D. $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
49. Which one of the following orders is correct for the Brönsted-Lowry acids and bases in the equation

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{OH}_{(a q)}^{-} \text {? }
$$

A. acid + base \Leftrightarrow acid + base
B. acid + base \Leftrightarrow base + acid
C. base + acid \Leftrightarrow acid + base
D. base + acid \Leftrightarrow base + acid
50. Which one of the following statements BEST describes a Brönsted-Lowry base?
A. It will accept an H^{+}.
B. It will donate an H^{+}.
C. It will accept an OH^{-}.
D. It will donate an OH^{-}.
51. The indicator quinaldine red has a colourless acid form and a pink base form. Its K_{a} is 2.5×10^{-2}. Which one of the following descriptions of a aqueous solution of quinaldine red at a pH of 6 is correct?
A. The solution is pink
B. The solution is colourless
C. The [acid form] > [base form]
D. The $[$ acid form $]=[$ base form $]$
52. Which one of the following K_{a} expressions for the dissociation of hydrogen sulfide in water is correct given that the equation for the dissociation is

$$
\mathrm{H}_{2} \mathrm{~S}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HS}_{(a q)}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}
$$

A. $\mathrm{K}_{\mathrm{a}}=-\frac{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
B. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
C. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
D. $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{2} \mathrm{~S}\right]$
53. Which one of the following expression is the correct expression for pK_{w} ?
A. $\mathrm{pK}_{\mathrm{w}}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}$
B. $\mathrm{pK}_{\mathrm{w}}=(\mathrm{pH})(\mathrm{pOH})$
C. $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$
D. $\mathrm{pK} \mathrm{K}_{\mathrm{w}}=\operatorname{antilog} \mathrm{K}_{\mathrm{w}}$
54. An aqueous solution of the base hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is in equilibrium with its conjugate acid, $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$. If the K_{b} for $\mathrm{N}_{2} \mathrm{H}_{4}$ is 1.70×10^{-6} at $20^{\circ} \mathrm{C}$, what is the Ka for $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$?
A. 5.88×10^{-9}
B. 1.70×10^{-6}
C. 5.88×10^{5}
D. 1.70×10^{8}
55. Water at $25^{\circ} \mathrm{C}$ has a pH of 7 and the equation for dissociation is

$$
2 \mathrm{H}_{2} \mathrm{O}_{(l)}+57.3 \mathrm{~kJ} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

Water at $80^{\circ} \mathrm{C}$ could BEST be described as
A. basic.
B. acidic.
C. neutral with a pH less than 7 .
D. neutral with a pH greater than 7 .
56. What is the pH of a 2.0 M solution of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$?
A. 1.94
B. 2.24
C. 3.88
D. 4.48
57. A dilute solution of $\mathrm{Na}_{2} \mathrm{~S}$ will contain
A. undissociated $\mathrm{Na}_{2} \mathrm{~S}$
B. more $\mathrm{HS}^{-}{ }_{(a q)}$ than $\mathrm{S}^{2-}{ }_{(a q)}$
C. more $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$ than $\mathrm{OH}^{-}(a q)$
D. strongly hydrolyzed $\mathrm{Na}^{+}(a q)$
58. When selecting an indicator for any titration, how should the indicator endpoint compare to the titration stoichiometric point?
A. The endpoint and stoichiometric point should coincide.
B. The endpoint should be before the stoichiometric point.
C. The endpoint should be after the stoichiometric point.
D. The endpoint and stoichiometric point should both be at pH 9 .
59. Which one of the following describes the pH at the stoichiometric point in the titration of a strong acid with a strong base?
A. $\mathrm{pH}=0$
B. $\mathrm{pH}=7$
C. $0<\mathrm{pH}<7$
D. $7<\mathrm{pH}<14$
60. 30.0 mL of 0.50 M HCl solution are titrated with 20.0 mL of 0.50 M NaOH solution. What is the pH of the resulting solution?
A. 0.00
B. 1.00
C. 7.00
D. 13.00
61. Which of the following equations represents an acid-base titration?
A. $\mathrm{Ba}^{2+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)} \Leftrightarrow \mathrm{BaSO}_{4(s)}$
B. $\mathrm{CH}_{3} \mathrm{COOK}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{K}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}$
C. $\mathrm{Zn}_{(s)}+2 \mathrm{H}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)} \Leftrightarrow \mathrm{Zn}^{2+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+\mathrm{H}_{2(g)}$
D. $\mathrm{K}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q)+\mathrm{H}^{+}(a q)+\mathrm{NO}_{3}^{-}{ }_{(a q)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{K}^{+}(a q)+\mathrm{NO}_{3}^{-}{ }_{(a q)}$
62. In a titration, 20.0 mL of 0.50 M NaOH solution reacts completely with 30.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the initial concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A. 0.17 M
B. 0.33 M
C. 0.50 M
D. 0.67 M
63. An acid buffer is a solution containing
A. a strong acid and its salt.
B. a strong acid and a strong base.
C. a weak acid and a strong acid.
D. a weak acid and a salt of its conjugate base.
64. Which one of the following will occur when $\mathrm{NaF}_{(s)}$ is added to a 0.5 M HF solution?
A. The pH of the HF solution decreases.
B. The pH of the HF solution remains the same.
C. The acidity of the HF solution decreases.
D. The acidity of the HF solution increases.
65. Which one of the following ions is the conjugate base of $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}{ }_{(a q)}$?
A. $\mathrm{Al}\left(\mathrm{H}_{3} \mathrm{O}\right)_{6}{ }^{4+}{ }_{(a q)}$
B. $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}{ }_{(a q)}$
C. $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}{ }_{(a q)}$
D. $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{OH}^{2+}{ }_{(a q)}$
66. Which of the following solutions will have the greatest $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
A. $0.05 \mathrm{M} \mathrm{HNO}_{2}$
B. 0.10 M HCl
C. $0.15 \mathrm{M} \mathrm{HNO}_{3}$
D. 0.20 M HCN
67. In which of the following equations is $\mathrm{HSO}_{3}{ }^{-}$acting as a base?
A. $2 \mathrm{HSO}_{3}^{-{ }_{(a q)}} \rightarrow \mathrm{S}_{2} \mathrm{O}_{5}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $\mathrm{HSO}_{3^{-}(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $\mathrm{HSO}_{3}^{-}{ }_{(a q)}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{SO}_{3}^{2-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
D. $\mathrm{HSO}_{3}^{--}(a q)+\mathrm{HPO}_{4}{ }^{2-}(a q) \rightarrow \mathrm{SO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }_{(a q)}$

Use the following table to answer question 68.

68. In which area of the periodic table shown would you find elements which form the most basic oxides?
A. I
B. II
C. III
D. IV
69. A common property of 6 M solutions of strong acids and bases is that they
A. are amphiprotic
B. conduct electricity well
C. have the same pH
D. change red litmus to blue

ACID/BASE REVIEW

70. The equation for the ionization of ammonia is

$$
\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q)
$$

The K_{b} expression for this reaction is
A. $\quad\left[\mathrm{NH}_{3}\right]$
$\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{NH}_{3}\right]$
C. $\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
D. $\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
$\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]$
71. The pH of a solution is found to be 5.00 . What is the value of pOH for the same solution?
A. 2.00
B. 5.00
C. 9.00
D. 12.00
72. The word "hydrolysis" in chemistry refers to the
A. reaction of water with substances
B. reaction of hydrogen with ions
C. removal of water from a compound
D. removal of hydrogen from a compound.
73. Which of the following salts dissolved in distilled water will produce the most acidic solution if all solutions are at 0.10 M ?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. CrCl_{3}
C. FeCl_{3}
D. AlCl_{3}
74. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with $\left[\mathrm{OH}^{-}\right]=2.7 \times 10^{-4} \mathrm{M}$?
A. $3.7 \times 10^{-11} \mathrm{M}$
B. $7.3 \times 10^{-8} \mathrm{M}$
C. $2.7 \times 10^{-4} \mathrm{M}$
D. $3.7 \times 10^{-4} \mathrm{M}$
75. The K_{b} volume for NH_{3} is 1.8×10^{-5}. What is the $\left[\mathrm{OH}^{-}\right]$in a 0.1 M solution of NH_{3} ?

$$
\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}_{(a q)}^{-}
$$

A. $2.7 \times 10^{-6} \mathrm{M}$
B. $1.2 \times 10^{-4} \mathrm{M}$
C. $1.7 \times 10^{-3} \mathrm{M}$
D. $4.2 \times 10^{-3} \mathrm{M}$
76. The K_{a} value for $\mathrm{H}_{2} \mathrm{CO}_{3}$ is 4.4×10^{-7}. What is the K_{b} value for its conjugate base?
A. 4.6×10^{-11}
B. 2.3×10^{-8}
C. 2.3×10^{-6}
D. 2.1×10^{-4}
77. What type of reaction does the following equation represent?

$$
\mathrm{Ba}(\mathrm{OH})_{2(a q)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

A. hydrolysis
B. decomposition
C. neutralization
D. oxidation-reduction
78. What volume of a $4.00 \times 10^{-2} \mathrm{M} \mathrm{HCl}$ solution is needed to neutralize $2.00 \times 10^{-1} \mathrm{~L}$ of a $1.00 \times$ $10^{-2} \mathrm{M} \mathrm{LiOH}$ solution?
A. $5.00 \times 10^{-2} \mathrm{~L}$
B. $1.00 \times 10^{-1} \mathrm{~L}$
C. $2.00 \times 10^{-1} \mathrm{~L}$
D. $5.00 \times 10^{-1} \mathrm{~L}$
79. 0.45 g of an unknown diprotic acid required $4.5 \times 10^{-3} \mathrm{~mol}$ of NaOH for complete neutralization. The mass of one mole of the acid is
A. $4.5 \times 10^{1} \mathrm{~g}$
B. $1.0 \times 10^{2} \mathrm{~g}$
C. $2.0 \times 10^{2} \mathrm{~g}$
D. $4.0 \times 10^{2} \mathrm{~g}$
80. When methyl red $\left(\mathrm{K}_{a}=1.0 \times 10^{-5}\right)$ is used as an indicator in a titration, it will change colour at a pH of approximately
A. 5
B. 7
C. 9
D. 10
81. Which of the following combinations will make a buffer solution?
A. HNO_{3} and $\mathrm{NO}_{3}{ }^{-}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HSO_{4}^{-}
C. HClO_{4} and ClO_{4}^{-}
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
82. Which of the following equations represents the buffer equilibrium present in an aqueous solution containing NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$?
A. $\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{NH}_{4}{ }_{(a q)}+\mathrm{OH}^{-}(a q)$
B. $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)}^{-} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $\mathrm{NH}_{4}{ }_{(a q)}+\mathrm{Cl}^{-}(a q) \Leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(s)}$
D. $\mathrm{NH}_{3(a q)}+\mathrm{Cl}^{-}(a q) \Leftrightarrow \mathrm{NH}_{2}^{-}{ }_{(a q)}+\mathrm{HCl}_{(a q)}$
83. Which of the following compounds is a base when in solution?
A. HCl
B. NH_{3}
C. NaCl
D. $\mathrm{CH}_{3} \mathrm{COOH}$
84. Which two substances act as the Brönsted-Lowry acids in the following equilibrium?

$$
\mathrm{O}^{2-}+\mathrm{HSO}_{4}^{-} \Leftrightarrow \mathrm{OH}^{-}+\mathrm{SO}_{4}{ }^{2-}
$$

A. O^{2-} and $\mathrm{SO}_{4}{ }^{2-}$
B. O^{2-} and OH^{-}
C. HSO_{4}^{-}and OH^{-}
D. HSO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$
85. Which of the following compounds is a strong base in solution?
A. LiOH
B. NaHS
C. $\mathrm{K}_{2} \mathrm{CO}_{3}$
D. $\mathrm{NH}_{4} \mathrm{Cl}$
86. Consider the following equilibrium reaction for the indicator propyl red, HPr :

$$
\mathrm{HPr}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Pr}^{-}
$$

If NaOH is added, this equilibrium shifts to the
A. left as [HPr] decreases.
B. right as [HPr] increases.
C. left as $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases.
D. right as $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases.
87. Which of the following reactions will favour reactants at equilibrium?
A. $\mathrm{HF}+\mathrm{HS}^{-} \Leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{HF}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{HF}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{F}^{-}+\mathrm{HSO}_{4}^{-}$
D. $\mathrm{HF}+\mathrm{CH}_{3} \mathrm{COO}^{-} \Leftrightarrow \mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{COOH}$
88. The expression for the ionization constant of water is
A. $\mathrm{K}_{w}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{OH}^{-}\right]}$
B. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
C. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
[$\mathrm{H}_{2} \mathrm{O}$]
D. $\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
89. At $40^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=3.1 \times 10^{-14}$. Water at $40^{\circ} \mathrm{C}$ may be described as
A. acidic with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.1 \times 10^{-7} \mathrm{M}$.
B. acidic with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-7} \mathrm{M}$.
C. neutral with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-7} \mathrm{M}$.
D. neutral with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$.
90. In a solution at $25^{\circ} \mathrm{C}$ where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{b} 2.0 \mathrm{M}$, the $\left[\mathrm{OH}^{-}\right]$is
A. $5.0 \times 10^{-15} \mathrm{M}$
B. $2.0 \times 10^{-14} \mathrm{M}$
C. $5.0 \times 10^{-13} \mathrm{M}$
D. 12 M
91. Consider the following equilibrium constant expression:

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{HCO}_{3}^{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}
$$

This expression represents
A. K_{b} for $\mathrm{CO}_{3}{ }^{2-}$
B. K_{a} for $\mathrm{CO}_{3}{ }^{2-}$
C. K_{b} for HCO_{3}^{-}
D. K_{a} for HCO_{3}^{-}
92. The net ionic equation for the hydrolysis that occurs when KF is dissolved in water is
A. $\mathrm{KF}_{(s)} \rightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{F}_{(a q)}^{-}$
B. $\mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HF}_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
C. $\mathrm{KF}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{HKF}_{(a q)}^{+}+\mathrm{OH}^{-}(a q)$
D. $\mathrm{KF}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{HF}_{(a q)}+\mathrm{KOH}_{(a q)}$
93. Which of the following 0.10 M salt solutions is neutral?
A. KI
B. SrS
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
94. The pH of two solutions is measured as follows:

$$
\begin{array}{ll}
\text { Solution A } & \mathrm{pH}=2.0 \\
\text { Solution } \mathrm{B} & \mathrm{pH}=6.0
\end{array}
$$

The data suggest that the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in solution A is
A. $\frac{1}{3}$ of that in solution B.
B. 3 times that in solution B.
C. 0.0001 of that in solution B.
D. 10,000 times that in solution B.
95. A substance which undergoes a colour change with a change in pH is known as
A. an acid-base buffer.
B. an acid-base titration.
C. an acid-base indicator.
D. a salt which hydrolyzes.
96. A student uses several indicators to determine the pH of a solution and obtains the following data:

Indicator	Thymol blue	Methyl orange	Methyl red	Phenol red	Phenolphthalein
Colour	yellow	yellow	red	yellow	colourless

The pH of the solution is
A. 2.8
B. 4.6
C. 6.3
D. 8.1
97. In a solution of pH 9.52 , the $\left[\mathrm{OH}^{-}\right]$is
A. $3.0 \times 10^{-10} \mathrm{M}$
B. $1.7 \times 10^{-5} \mathrm{M}$
C. $3.3 \times 10^{-5} \mathrm{M}$
D. 4.48 M
98. The pH of a $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution is approximately
A. 1
B. 7
C. 10
D. 14
99. A property that is exhibited by acids and bases in solution is that they both
A. taste bitter.
B. react with Zn .
C. conduct electricity.
D. turn methyl violet to blue.
100. The conjugate acid of $\mathrm{PO}_{4}{ }^{3-}$ is
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{HPO}_{4}{ }^{2-}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
101. Consider the following:

$$
\mathrm{SO}_{4}^{2-}+\mathrm{HNO}_{2} \Leftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{-}
$$

Equilibrium would favour
A. the products since HSO_{4}^{-}is a weaker acid that HNO_{2}.
B. the reactants since HSO_{4}^{-}is a weaker acid that HNO_{2}.
C. the products since HSO_{4}^{-}is a stronger acid than HNO_{2}.
D. the reactants since $\mathrm{HSO}_{4}{ }^{-}$is a stronger acid than HNO_{2}
102. The strongest base that can exist in water is
A. O^{2-}
B. NH_{3}
C. $\mathrm{NH}_{2}{ }^{-}$
D. OH^{-}
103. Which of the following acids will have the greatest $\left[\mathrm{OH}^{-}\right]$?
A. $\quad 1.0 \mathrm{M} \mathrm{HI}$
B. 1.0 M HF
C. 1.0 M HCN
D. $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
104. When either HCl or NaOH is added to water at $25^{\circ} \mathrm{C}$, the fraction of water molecules ionized is
A. less than in pure water.
B. greater than in pure water.
C. equal to that in pure water.
D. always equal to 1.00×10^{-14}.
105. The value of K_{b} for F^{-}is
A. 1.5×10^{-11}
B. 6.7×110^{-4}
C. 1.5×10^{-3}
D. 1.5×10^{3}
106. A substance has a $K_{a}=4.0 \times 10^{-12}$. From this information it can be concluded that the substance is a
A. weak base.
B. weak acid.
C. strong base
D. strong acid.
107. A student heats a sample of water and measures the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at various temperatures giving the following data:

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	0	20	40	60
$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	$4.4 \times 10^{-8} \mathrm{M}$	$8.2 \times 10^{-8} \mathrm{M}$	$1.3 \times 10^{-7} \mathrm{M}$	$3.2 \times 10^{-7} \mathrm{M}$

These data show that as water is heated
A. the pH increases.
B. it becomes more acidic.
C. it is ionized to a greater extent.
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases while $\left[\mathrm{OH}^{-}\right]$decreases.
108. 25.00 mL of a solution of HCl was titrated with 0.4500 M NaOH using bromthymol blue as indicator. Successive readings of the burette gave the following data:

Volume of $\mathbf{N a O H}(\mathbf{m L})$	Colour
16.35	yellow
16.40	yellow
16.45	green
16.50	blue

Based on these data, the original $[\mathrm{HCl}]$ was
A. 0.06839 M
B. 0.2948 M
C. 0.2957 M
D. 0.2970 M
109. Which of the following oxides, when dissolved in water, will produce the most basic solution?
A. SO_{2}
B. CO_{2}
C. BaO
D. ClO
110. In comparison with a strong acid - weak base titration, the equivalence point of a strong acid - strong base titration
A. occurs at a higher pH .
B. is more difficult to detect.
C. gives more reliable results.
D. occurs within a narrower pH range.
111. The indicator Congo red, HInd, ionizes according to the following equation:

$$
\operatorname{HInd}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\operatorname{Ind}_{(a q)}^{-}
$$

When added to solutions of HCl of various concentrations, Congo red displayed the following colours:

$[\mathbf{H C l}]$	Colour
0.10 M	red
0.010 M	orange
0.0010 M	yellow

When the colour orange is observed,
A. $[\mathrm{HInd}]=[\mathrm{HCl}]$
B. $[$ HInd $]=\left[\mathrm{Ind}^{-}\right]$
C. $[$ HInd $]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
D. $[\mathrm{HInd}]=\mathrm{K}_{a}[\mathrm{HInd}]$
112. The pH of $0.60 \mathrm{M} \mathrm{HClO}_{4}$ is
A. -0.60
B. 0.22
C. 0.60
D. 13.78
113. The approximate K_{a} value for the indicator thymolphthalein is
A. 1×10^{-10}
B. 1×10^{-4}
C. 4
D. 10
114. Consider the following 1.0 M solutions:
$\mathrm{NaOH}, \mathrm{HCl}$, and NaCl
Which of the following lists these solutions in increasing order of pH ?
A. $\mathrm{NaOH}, \mathrm{HCl}, \mathrm{NaCl}$
B. $\mathrm{HCl}, \mathrm{NaOH}, \mathrm{NaCl}$
C. $\mathrm{NaOH}, \mathrm{NaCl}, \mathrm{HCl}$
D. $\mathrm{HCl}, \mathrm{NaCl}, \mathrm{NaOH}$

WRITTEN RESPONSE QUESTIONS

Your steps and assumptions leading to a solution must be written. In questions involving calculation, full marks will not be given for providing only an answer. Students will be expected to communicate the knowledge and understanding of chemical principles in a clear and logical manner.

1. Calculate K_{b} for $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$, the conjugate base for boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$. (2 marks)
2. Write the net ionic equation for the following reaction : potassium hydroxide neutralized by acetic acid. (2 marks)
3. A 0.10 M solution of a weak acid HX has a pH of 4.26. Calculate the value of K_{a} for HX . (3 marks)
4. Calculate the pH of a solution made by dissolving 3.75 g of RbOH in 79.8 mL of $0.18 \mathrm{M} \mathrm{HNO}_{3}$. Assume no volume change. (5 marks)
5. Write the equilibrium equation for the reaction of the HS^{-}ion with water to produce a basic solution. State whether the reactants or products are favoured. (2 marks)
6. \quad The K_{a} and K_{b} values for the $\mathrm{HPO}_{4}{ }^{2-}$ ion in water are given below :

$$
\begin{array}{ll}
\mathrm{HPO}_{4}^{2-} \\
\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{a}}=4.4 \times 10^{-13} \\
\mathrm{~K}_{\mathrm{b}}=1.6 \times 10^{-7}
\end{array}
$$

Indicate whether an aqueous solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is basic or acidic, and explain your answer with reference to the K_{a} and K_{b} values given above. (2 marks)
7. Calculate the mass of $\mathrm{NaOH}_{(\mathrm{s})}$ that would have to be added to 10.0 mL of a $2.00 \mathrm{M} \mathrm{HNO}_{3}$ solution to obtain a pH of 1.00. ($\mathbf{4}$ marks)
8. What is the function of a buffer in a chemical system? ($\mathbf{1}$ mark)
9. Combustion of coal which contains sulphur produces a gaseous sulphur compound. This compound, when released into the atmosphere, undergoes a series of reactions eventually forming "acid rain". Explain this process, and support your answer with appropriate equations. (3 marks)
10. A 0.60 M solution of the weak acid HX is found to have a $\mathrm{pH}=4.30$. Determine K_{a} for this acid. (3 marks)
11. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution with a pOH of 3.86. (2 marks)
12. Give the formula for each of the following :
a) a third row amphiprotic hydroxide. (1 mark)
b) a third row basic hydroxide. (1 mark)
13. Determine the $\left[\mathrm{H}^{+}\right]$in 2.4 M HF. (2 marks)
14. If you were given two unknown acids of equal concentration, briefly describe how you would identify the stronger acid. What testing material or instrument would you use, and how would you interpret your results? (2 marks)
15. In an acid-base titration, it was found that 18.4 mL of 0.200 M NaOH was required to neutralize a 0.22 g sample of a monoprotic acid. What is the mass of one mole of this acid ? (3 marks)
16. a) Compare the ease with which the first hydrogen ion (proton) is removed from a diprotic acid in relation to the ease of removal of the second hydrogen ion. (1 mark)
b) Use an example from the table of acids to illustrate the above situation. (1 mark)
17. The weak acid, HClO , has a K_{a} of 3.24×10^{-8}. Calculate the pH of a 0.076 M solution of HClO . ($\mathbf{3}$ marks)
18. A solution with a pH of 4.20 is found to contain twice as much conjugate base as acid. alculate the value of the acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for this monoprotic acid. ($\mathbf{3}$ marks)
19. Identify each substance in the following equation as either an acid or a base, and then state hether the position of equilibrium favours the reactants or products. ($\mathbf{3}$ marks)
$\mathrm{HOOCCOO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{HOOCCOOH}_{(\mathrm{aq})}+\mathrm{HPO}_{4}^{2-}{ }_{(\mathrm{aq})}$
20. Calculate the pH of a 0.40 M solution of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$. K_{a} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is 6.6×10^{-5}. (3 marks)
21. $\quad 25.0 \mathrm{~mL}$ of $0.025 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is completely neutralized by 28.3 mL of HCl solution. What is the concentration of the HCl solution? ($\mathbf{3}$ marks)

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

22. a) Write the equation for the acid-base equilibrium reaction that occurs when aqueous solutions containing equal concentrationsof $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{SO}_{3}{ }^{2-}$ are mixed. (2 marks)
b) What acid in the above equilibrium will be present in the greatest concentration? (1 mark)
23. Write a balanced equation showing the formation of a basic aqueous solution using the metal xide SrO . (1 mark)
24. $\quad \mathrm{SO}_{2}$ is a waste product in some industrial processes. State the environmental problem ssociated with $\mathrm{SO}_{2}(\mathrm{~g})$, write the equation that accounts for this problem, and give one effect on the natural environment. (2 marks)
25. a) Write the balanced molecular (formula) equation for the reaction between solution of NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$. (1 mark)
b) Write the net ionic equation for the above reaction. (1 mark)
26. Write an equation that shows HClO_{2} acting as a weak acid in water. (2 marks)
27. Calculate the pH of a 0.70 M solution of boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$. Include the ionization equation of $\mathrm{H}_{3} \mathrm{BO}_{3}$ as part of your answer. (4 marks)
28. The hydrogen carbonate ion ionizes as a weak base according to the following equation:

$$
\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3(a q)}+\mathrm{OH}_{(a q)}^{-}
$$

Calculate the value of K_{b} for HCO_{3}^{-}. (1 mark)
29. Calculate the volume of 0.185 M HCl necessary to neutralize 2.36 g of $\mathrm{Ba}(\mathrm{OH})_{2}$. ($\mathbf{3}$ marks)
30. Define the term "amphiprotic" and give an example of a chemical species that is amphiprotic. (2 marks)
31. Write the net ionic equation for the hydrolysis reaction that occurs when $\mathrm{Be}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ is dissolved in water. (2 marks)
32. Using KF as one of the reagents, describe how to prepare a buffer solution. Write the equation of the equilibrium present in this buffer, and state the purpose of a buffer solution. ($\mathbf{3}$ marks)
33. Ammonia, a weak base, establishes the following equilibrium in water:

$$
\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}_{(a q)}^{-}
$$

Calculate the $\left[\mathrm{OH}^{-}\right]$in a 1.0 M solution of NH_{3}. (4 marks) 91-6 \#10

ANSWERS

MULTIPLE CHOICE:

1. C
2. D
3. C
4. D
5. B
6. C
7. C
8. A
9. D
10. B
11. A
12. C
13. B
14. C
15. C
16. C
17. B
18. A
19. C
20. B
21. A
22. C
23. B
24. C
25. A
26. A
27. D
28. A
29. A
30. D
31. A
32. B
33. C
34. A
35. A
36. B
37. C
38. B
39. C
40. D
41. B
42. A
43. B
44. D
45. D
46. C
47. D
48. B
49. C
50. A
51. B
52. D
53. C
54. A
55. C
56. A
57. C
58. A
59. B
60. A
61. D
62. A
63. D
64. C
65. C
66. C
67. B
68. A
69. B
70. B
71. C
72. A
73. C
74. A
75. D
76. D
77. B
78. C
79. A
80. C
81. A
82. D
83. A
84. B
85. C
86. A
87. D
88. C
89. B
90. C
91. A
92. A
93. B
94. A
95. D
96. C
97. B
98. C
99. C
100. C
101. B
102. D
103. D
104. C
105. A
106. A
107. B
108. C
109. D
110. A
111. B
112. B
113. A
114. D

ANSWERS

WRITTEN RESPONSE:

1. 1.5×10^{-5}
2. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
3. 3.0×10^{-8}
4. $\quad 13.44$
5. $\quad \mathrm{HS}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$ reactants
6. basic because $K_{b}>K_{a}$
7. $\quad 0.76$ grams
8. to prevent rapid changes in pH due to addition of H^{+}or OH^{-}ions.
9. $\quad \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
10. 4.2×10^{-9}
11. $7.2 \times 10^{-11} \mathrm{M}$
12. a) $\mathrm{Al}(\mathrm{OH})_{3}$ or $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$
b) NaOH
13. $4.0 \times 10^{-2} \mathrm{M}$
14. Use a pH indicator or meter. A lower pH indicates a higher $\left[\mathrm{H}^{+}\right]$which means greater dissociation which means stronger acid.
15. $60 \mathrm{~g} / \mathrm{mol}$
16. a) It's much easier to remove first proton.
b) $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \mathrm{K}_{\mathrm{a}}$ very large $\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \mathrm{K}_{\mathrm{a}}$ not as large
17. 4.30
18. 1.3×10^{-4}
19. base, acid, acid, base reactants
20. answer: 2.29

	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	\Leftrightarrow	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	$+$	H^{+}	
I	0.40 M		0 M		negligible	
C	-x		+x		+x	$\}(1 \mathrm{mark})$
E	$\begin{aligned} 0.40- & x \\ & \uparrow \\ & \text { assum } \end{aligned}$		X (1/2 mark)		x	

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$
$6.6 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.40}$

$$
\mathrm{x}^{2}=2.64 \times 10^{-5}
$$

$$
\mathrm{x}=\sqrt{2.64 \times 10^{-5}}
$$

$$
\mathrm{x}=5.1 \times 10^{-3}=\left[\mathrm{H}^{+}\right](\mathbf{1} / \mathbf{2} \text { mark })
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.1 \times 10^{-3}\right)=\quad 2.29 \quad(1$ mark; subtract $1 / 2$ for incorrect sig figs)
21. answer: 0.044 M
$\mathrm{mol} \mathrm{Ca} 2=0.025 \mathrm{~mL} \times \underline{0.025 \mathrm{~mol}}=6.25 \times 10^{-4} \mathrm{~mol}$
(1 mark)
$\mathrm{mol} \mathrm{H}^{+}=6.25 \times 10^{-4} \mathrm{~mol} \mathrm{Ca}^{2+} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}=1.25 \times 10^{-3} \mathrm{~mol} \quad(\mathbf{1}$ mark $)$
$[\mathrm{HCl}]=\left[\mathrm{H}^{+}\right]=\frac{1.25 \times 10^{-3} \mathrm{~mol}}{0.0283 \mathrm{~L}} \quad=0.0442 \mathrm{M}=0.044 \mathrm{M} \quad(\mathbf{1}$ mark $)$
22. a) $\mathrm{HCO}_{3}^{-}-(\mathrm{aq})+\mathrm{SO}_{3}^{2-}{ }_{(\mathrm{aq})} \Leftrightarrow \mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{HSO}_{3}^{-}(\mathrm{aq})$
23. $\quad \mathrm{SrO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Sr}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
24. $\quad \mathrm{SO}_{2}$ produces acid rain. This acidifies lakes which kills fish. (It also destroys plant roots and damages leaves.)
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ or
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\longrightarrow} 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
25. a) $2 \mathrm{NaOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
b) $\mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{OH}^{-}{ }_{(\text {aq })} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
26. $\mathrm{HClO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{2}^{-}-1$ mark for correct reactants and products 1 mark for equilibrium
or $\quad \mathrm{HClO}_{2} \Leftrightarrow \mathrm{H}^{+}+\mathrm{ClO}_{2}^{-}$
27.

$$
\mathrm{H}_{3} \mathrm{BO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\quad \mathrm{H}_{2} \mathrm{BO}_{3^{-}(\mathrm{aq})} \quad \text { (1 mark for ICE table) }
$$

I $\quad 0.70 \mathrm{M} \quad$ negligible 0
C $-\mathrm{x} \quad+\mathrm{x} \quad+\mathrm{x}$

E $\begin{gathered}\text { 0.70 - } \\ \uparrow\end{gathered}+\mathrm{x}+\mathrm{x}$ assume x << 0.70 ($\mathbf{1 / 2} \mathbf{~ m a r k) ~}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}
$$

$$
\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-10}=\frac{\mathrm{x}^{2}}{0.70} \quad(\mathbf{1} / 2 \text { mark })
$$

$$
x=\sqrt{(0.70)\left(6.5 \times 10^{-5}\right)}
$$

$$
\begin{equation*}
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.1 \times 10^{-5} \mathrm{M} \tag{1/2mark}
\end{equation*}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.1 \times 10^{-5}\right)=4.67
$$

(1/2 mark)
(1/2 mark for correct sig figs)
28. $\quad \mathrm{K}_{\mathrm{b}}\left(\mathrm{HCO}_{3}^{-}\right)=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)}$

$$
\begin{align*}
\mathrm{K}_{\mathrm{b}}\left(\mathrm{HCO}_{3}^{-}\right) & =\frac{1.00 \times 10^{-14}}{4.4 \times 10^{-7}} \quad \quad(\mathbf{1} / \mathbf{2} \text { mark }) \tag{1/2mark}\\
& =2.3 \times 10^{-8}
\end{align*}
$$

29. moles $\mathrm{Ba}(\mathrm{OH})_{2}$ used $=2.36 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{171.3 \mathrm{~g}}$

$$
=1.38 \times 10^{-2} \mathrm{~mol}
$$

(1/2 mark)
(1/2 mark)

$$
\begin{aligned}
\text { moles } \mathrm{HCl} \text { required } & =1.38 \times 10^{-2} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{2 \mathrm{HCl}}{1 \mathrm{Ba}(\mathrm{OH})_{2}} \\
& =2.76 \times 10^{-2} \mathrm{~mol}
\end{aligned}
$$

volume HCl required $=2.76 \times 10^{-2} \mathrm{~mol} \times \frac{1 \mathrm{~L}}{0.185 \mathrm{~mol}}$

$$
=0.149 \mathrm{~L}(\text { or } 149 \mathrm{~mL})
$$

(1 mark)
30. A substance that is capable of accepting or donating a proton.
or A substance capable of acting as an acid or a base.
31. $\quad \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}$(aq)
($1 / 2$ mark for each chemical species above)
(If balanced molecular equation is given one mark awarded.)
32. To the KF solution add the conjugate acid of F^{-}, namely HF
or Add any weak acid
$\mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}^{-}{ }_{(\mathrm{aq})}$
or $\quad \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{HF}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$
or an appropriate balanced equation using a different weak acid.
33.

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) \quad+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

I	1.0 M	---	0	negligible
C	-x		+x	+x
E	$\underset{\sim}{1.0-\mathrm{x}}$		x	x

assume x is insignificant
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{4}{ }^{+}\right)}=\frac{1.00 \times 10^{-14}}{5.7 \times 10^{-10}}=1.8 \times 10^{-5}$
(1 mark)
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}^{2}}{1.0}=1.8 \times 10^{-5}(\mathbf{1} / \mathbf{2}$ mark $)$
\uparrow
(1/2 mark)
$\mathrm{x}=\left[\mathrm{OH}^{-}\right]=4.2 \times 10^{-3} \mathrm{M}$
(1/2 mark)

