Chemistry 12
 Unit 2 - Chemical Equilibrium Review

1. What two things are equal at equilibrium?
\qquad and \qquad
2. Consider the following potential energy diagram:

a) Which reaction, forward or reverse, will be affected more by an increase in temperature?
b) Write a thermochemical equation for the forward reaction using the numerical value for the heat. (put the heat in the reaction)

Answer \qquad
c) When the temperature is first raised, which reaction will increase most in rate, forward or reverse? \qquad
Explain why. \qquad
d) If the rate of the forward reaction is faster than the reverse reaction for awhile, what will happen to the $\left[\mathrm{A}_{2}\right]$ and $\left[\mathrm{B}_{2}\right]$? \qquad
e) If the $\left[A_{2}\right]$ and $\left[B_{2}\right]$ increases, what will happen to the rate of the reverse reaction?
f) When the reverse reaction rate catches $u p$ to the forward reaction rate, the system is again at \qquad
g) Since, for awhile, the rate of the forward reaction was faster than the rate of the reverse reaction, there would be an increase in the concentrations of \qquad and a decrease in the concentration of \qquad in the second equilibrium.
h) We can summarize by saying that the equilibrium has shifted to the \qquad as a result of increasing the temperature.
i) Draw a graph showing the rates of the forward and reverse reactions vs. time summarizing what happens in 2(c) to 2(f). (Check out which way things will shift!)

Rates

3. Consider the reaction:

$$
\mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{2(\mathrm{~g})} \neq 2 \mathrm{C}_{(\mathrm{g})}
$$

a) If one mole of A_{2} and one mole of B_{2} are placed in a 1.0 L container, an equilibrium is established in which $\left[\mathrm{A}_{2}\right]$ and $\left[\mathrm{B}_{2}\right]=0.40 \mathrm{M}$ and $[\mathrm{C}]=1.2 \mathrm{M}$. If 2.0 moles of C are placed into another 1.0 L container at the same temperature, what will the final concentrations of all the species be? (HINT: This is not a calculation. It deals with how equilibrium can be approached from the left or from the right.)
$\left[\mathrm{A}_{2}\right]=$ \qquad $\left[\mathrm{B}_{2}\right]=$ \qquad [C] = \qquad
b) Sketch two graphs showing each of the activities performed in 3a. The graphs are concentration vs. time.
(Starting with 1 mole A_{2} and 1 mole of B_{2})

(Starting with 2 moles of C)
\qquad
IIME \rightarrow
4. Give five characteristics of the equilibrium state.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. Explain why the colour of NO_{2} gas first gets darker and then gets lighter when compressed in a syringe. The equation is:

$$
\underset{\text { colourless }}{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}} \rightleftarrows \quad \underset{\text { dark brown }}{2 \mathrm{NO}_{2(\mathrm{~g})}}
$$

6. Define enthalpy
7. Define entropy
8. For the reaction:

$$
\mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \nLeftarrow \quad \mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \quad \Delta \mathrm{H}=+152 \mathrm{~kJ}
$$

The tendency toward minimum enthalpy favours the \qquad . The tendency toward maximum entropy favours the \qquad
If the reactants are combined will the reaction go to completion, not occur at all or reach a state of equilibrium?
9. For the reaction:

$$
2 \mathrm{NaHCO}_{3(\mathrm{~s})}+\text { heat } \nless \mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

As this reaction proceeds right, enthalpy is \qquad creasing and entropy is creasing.

If the reactants are combined will the reaction go to completion, not occur at all or reach a state of equilibrium?
10. For the reaction:

$$
\mathrm{Cl}_{2(\mathrm{aq})}+25 \mathrm{~kJ} \underset{ }{\rightleftarrows} \quad \mathrm{Cl}_{2(\mathrm{~g})}
$$

The tendency toward minimum enthalpy favours the \qquad . The tendency toward maximum entropy favours the \qquad
If the reactants are combined will the reaction go to completion, not occur at all or reach a state of equilibrium?
11. For the reaction:

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \underset{ }{\rightleftarrows} \mathrm{Na}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})+1 / 2 \mathrm{H}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-184 \mathrm{~kJ}
$$

Which way will the equilibrium shift when the following changes are made:
a) $\mathrm{NaCl}_{(\mathrm{aq})}$ is added \qquad
\qquad
b) The pressure is increased \qquad
\qquad
c) The $\left[\mathrm{OH}^{-}\right]$is decreased \qquad
d) The temperature is decreased \qquad
\qquad
e) The volume of the container is decreased \qquad
\qquad
f) The solid sodium is chopped into smaller pieces.. \qquad
g) A catalyst is added \qquad
12. For the following reaction:

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}+\text { heat } \rightleftarrows 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Which way will the equilibrium shift (if any) when the following changes are made:
a) $[\mathrm{NO}]$ is decreased \qquad
\qquad
b) $\left[\mathrm{O}_{2}\right]$ is increased \qquad
\qquad
c) $\left[\mathrm{NH}_{3}\right]$ is increased \qquad
\qquad

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}+\text { heat } \rightleftarrows 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

d) The temperature is decreased \qquad
\qquad
e) The volume of the container is increased \qquad
f) The total pressure is increased \qquad
\qquad
g) Helium gas is added to increase the total pressure \qquad
h) The temperature is increased \qquad
\qquad
i) A catalyst is added \qquad
13. Discuss the ideal pressure and temperature conditions for achieving maximum yield of ammonia at a reasonable rate in the Haber Process:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \nLeftarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\text { heat }
$$

Pressure should be (high/low) \qquad and temperature should be
(high/low) \qquad , but still high enough to maintain a \qquad
Give reasons for your answer. \qquad
\qquad
14. In an experiment at $423^{\circ} \mathrm{C}$, the following concentrations were measured for the equilibrium system:

$$
2 \mathrm{HI}_{(\mathrm{g})} \quad \rightleftarrows \quad \mathrm{H}_{2(\mathrm{~g})}+\quad \mathrm{I}_{2(\mathrm{~g})}
$$

$[\mathrm{HI}]=17.7 \times 10^{-3} \mathrm{M}, \quad\left[\mathrm{H}_{2}\right]=1.83 \times 10^{-3} \mathrm{M}$ and $\quad\left[\mathrm{I}_{2}\right]=3.13 \times 10^{-3} \mathrm{M}$.
Calculate the value for the equilibrium constant (Keq) at $423^{\circ} \mathrm{C}$.
15. If, at $423^{\circ} \mathrm{C}$, the $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]=4.8 \times 10^{-3} \mathrm{M}$, calculate the $[\mathrm{HI}]$. Use Keq from question 14.
16. Given the equilibrium equation:

$$
\mathrm{X}_{2(\mathrm{~g})}+3 \mathrm{Y}_{2(\mathrm{~g})} \quad \overrightarrow{ } \quad 2 \mathrm{XY}_{3(\mathrm{~g})}
$$

If 2.0 moles of X_{2} and 2.0 moles of Y_{2} are added to a 1.0 L container, an equilibrium is established in which the $\left[\mathrm{Y}_{2}\right]=0.80 \mathrm{M}$. Find the following at equilibrium. (Use a table.)
$\left[\mathrm{X}_{2}\right]=$ \qquad $\left[\mathrm{XY}_{3}\right]=$ \qquad K еq $=$ \qquad
17. The equation: $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \nLeftarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$ has a Keq $=49$ at $25^{\circ} \mathrm{C}$.

If 1.0 mole of C and 1.0 mole of D are added to a 0.50 L container at $25^{\circ} \mathrm{C}$, calculate the following at equilibrium: (Use a table.)
$[\mathrm{A}]=$ \qquad $[B]=$ \qquad $[C]=$ \qquad [D] = \qquad
18. In the equilibrium in question 17, what, if anything, would happen to the value of the equilibrium constant if the temperature is increased and the reaction is exothermic?

Answer \qquad
Explain your answer.
\qquad
19. Write the Keq expression for the following reaction: (Be careful of phases!)

$$
2 \mathrm{NaHCO}_{3(\mathrm{~s})}+\text { heat } \rightleftarrows \mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

20. The Keq for the reaction:

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \nless 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \text { is } 85.0 \text { at } 25^{\circ} \mathrm{C} .
$$

Using this information, calculate the Keq for the reaction :

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \nLeftarrow 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

21. Consider the following equilibrium:

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \overrightarrow{\mathrm{c}} \quad 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \mathrm{Keq}=6.5 \text { at a certain temperature }
$$

What will occur when 1.0 mol of $\mathrm{SO}_{2}, 1.0 \mathrm{~mol}$ of O_{2}, and 1.0 mol of SO_{3} are placed in a 1.0 L container and allowed to reach equilibrium? Include in your answer a description of what will happen to the concentration of each of the chemicals.
22. Given the equilibrium:

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \vec{\gtrless} \quad \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-41 \mathrm{~kJ}
$$

Give 5 actions which could cause this equilibrium to shift to the left:
1.
2.
3.
4. \qquad
5. \qquad
23. How does the addition of a catalyst affect the Keq for a system? \qquad
24. Choose the equilibrium which most favours the reactants.
a) $\mathrm{NO}+1 / 2 \mathrm{O}_{2} \underset{ }{\rightleftarrows} \quad \mathrm{NO}_{2}$
$K e q=4.4 \times 10^{7}$
b) $\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightleftarrows \mathrm{CO}_{2}$
$\mathrm{Keq}=4.0 \times 10^{-3}$
c) $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \not \mathrm{CO}+\mathrm{H}_{2}$
Keq $=3.1 \times 10^{3}$
d) $\mathrm{NO}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NO}_{2} \mathrm{H}_{2}$
$\mathrm{Keq}=1.0 \times 10^{-22}$
25. Consider the following system: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \not{ }^{\rightleftarrows} 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-99 \mathrm{~kJ} / \mathrm{mol}$ What are four things which could be done in order to increase the yield of SO_{3} ?

1. \qquad
2. \qquad
3.
4.
5. Given the equilibrium equation: $\boldsymbol{X} \boldsymbol{Y}_{(g)}+$ heat $\not \boldsymbol{X}_{(g)}+\boldsymbol{Y}_{(\mathrm{g})}$

If initially, at equilibrium, the $[\mathrm{XY}]=3.0 \mathrm{M}$, the $[\mathrm{X}]=5.0 \mathrm{M}$ and the $[\mathrm{Y}]=6.0 \mathrm{M}$, draw a graph showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The temperature is decreased.
Time II - Some X (g) is removed from the system
Time III - Some $\mathrm{XY}_{(\mathrm{g})}$ is added to the system
Time IV - The total pressure is increased.

