

1. What two things are equal at *equilibrium*?

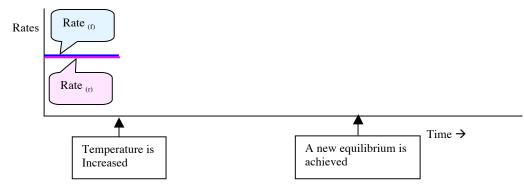
c) When the temperature is first raised, which reaction will increase *most* in rate, forward

or reverse?

Explain why.

d) If the rate of the forward reaction is *faster* than the reverse reaction for awhile, what

will happen to the [A₂] and [B₂]?

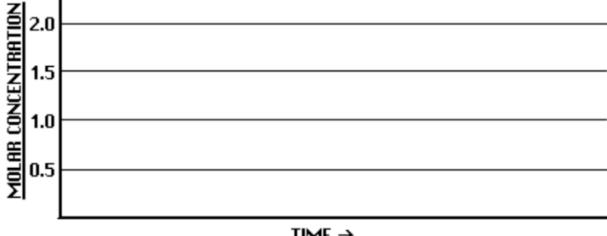

- e) If the [A₂] and [B₂] increases, what will happen to the rate of the *reverse reaction*?
- f) When the reverse reaction rate *catches up* to the forward reaction rate, the system is again at
- g) Since, for awhile, the rate of the forward reaction was faster than the rate of the

reverse reaction, there would be an increase in the concentrations of

and a *decrease* in the concentration of ______

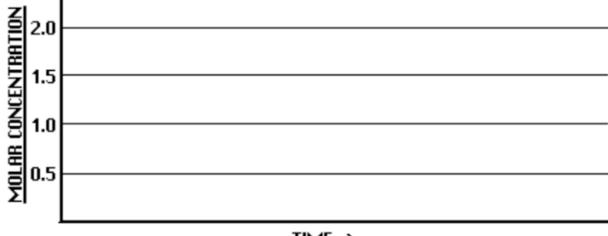
in the second equilibrium.

- h) We can summarize by saying that the equilibrium has shifted to the ______ as a result of increasing the temperature.
- i) Draw a graph showing the **rates** of the *forward* and *reverse* reactions vs. time summarizing what happens in 2(c) to 2(f). (Check out which way things will shift!)


3. Consider the reaction:

$$A_{2(g)} + B_{2(g)} \neq 2C_{(g)}$$

a) If one mole of A₂ and one mole of B₂ are placed in a 1.0 L container, an equilibrium is established in which [A₂] and [B₂] = 0.40 M and [C] = 1.2 M. If 2.0 moles of C are placed into another 1.0 L container at the same temperature, what will the final concentrations of all the species be? (*HINT: This is not a calculation. It deals with how equilibrium can be approached from the left or from the right.*)


b) Sketch *two* graphs showing each of the activities performed in 3a. The graphs are concentration vs. time.

(*Starting with 1 mole* A_2 and 1 mole of B_2)

<u>TIME</u> →

(Starting with 2 moles of C)

<u>TIME</u> \rightarrow

4. Give *five* characteristics of the *equilibrium* state.

5. Explain why the colour of NO₂ gas first gets **darker** and then gets *lighter* when compressed in a syringe. The equation is:

	$\begin{array}{ll} N_2O_{4(g)} \gtrless & 2NO_{2(g)} \\ colourless & dark brown \end{array}$				
6.	Define <i>enthalpy</i>				
7.	Define <i>entropy</i>				
8.	For the reaction:				
	$ZnCl_{2(aq)} + H_{2(g)} \neq Zn_{(s)} + 2HCl_{(aq)} \Delta H = +152 \text{ kJ}$				
	The tendency toward <i>minimum enthalpy</i> favours the The				
	tendency toward <i>maximum entropy</i> favours the				
	If the reactants are combined will the reaction <i>go to completion</i> , <i>not occur at all</i> or <i>reach a state of equilibrium</i> ?				
9.	For the reaction:				
	$2NaHCO_{3(s)} + heat \neq Na_2SO_{3(s)} + CO_{2(g)} + H_2O_{(g)}$				
	As this reaction proceeds right, enthalpy iscreasing and entropy iscreasing.				

If the reactants are combined will the reaction *go to completion*, *not occur at all* or *reach a state of equilibrium*?

10. For the reaction:

 $Cl_{2(aq)} + 25 \text{ kJ} \neq Cl_{2(g)}$

The tendency toward *minimum enthalpy* favours the ______. The

tendency toward *maximum entropy* favours the _____

If the reactants are combined will the reaction *go to completion*, *not occur at all* or *reach a state of equilibrium*?

11. For the reaction:

 $Na_{(s)} + H_2O_{(l)} \neq Na^+_{(aq)} + OH^-_{(aq)} + \frac{1}{2}H_{2(g)} \qquad \Delta H = -184 \text{ kJ}$

Which way will the equilibrium shift when the following changes are made:

a) NaCl_(aq) is added
b) The pressure is increased
c) The [OH⁻] is decreased
d) The temperature is decreased
e) The volume of the container is decreased
f) The solid sodium is chopped into smaller pieces..
g) A catalyst is added
For the following reaction:

 $4NH_{3(g)} + 5O_{2(g)} + heat \neq 4NO_{(g)} + 6H_2O_{(g)}$

Which way will the equilibrium shift (if any) when the following changes are made:

 a) [NO] is decreased

 b) [O₂] is increased

 c) [NH₃] is increased

12.

$4NH_{3(g)} +$	$5O_{2(g)}$	+ heat ₹	$4NO_{(g)} +$	$6H_2O_{(g)}$
J(g)	2(g)		····(g)	<u>-</u> -(g)

	d) The temperature is decreased				
	e) The volume of the container is increased				
	f) The total pressure is increased				
	g) Helium gas is added to increase the total pressure				
	h) The temperature is increased				
	i) A catalyst is added				
13.	3. Discuss the ideal pressure and temperature conditions for achieving maximum yield of ammonia at a reasonable rate in the <i>Haber Process</i> :				
	$N_{2(g)} + 3H_{2(g)} \neq 2NH_{3(g)} + heat$				
	Pressure should be (<i>high/low</i>) and temperature should be				
	(high/low), but still high enough to maintain a				
	Give reasons for your answer.				
14.	In an experiment at 423°C, the following concentrations were measured for the <i>equilibrium</i> system:				

 $2HI_{(g)} \stackrel{\scriptstyle \neq}{} H_{2(g)} + I_{2(g)}$

 $[HI] = 17.7 \text{ x } 10^{-3} \text{ M}, \quad [H_2] = 1.83 \text{ x } 10^{-3} \text{ M} \text{ and } \quad [I_2] = 3.13 \text{ x } 10^{-3} \text{ M}.$

Calculate the *value* for the equilibrium constant (Keq) at 423°C.

15. If, at 423°C, the $[H_2]$ and $[I_2] = 4.8 \times 10^{-3}$ M, calculate the [HI]. Use Keq from question 14.

16. Given the equilibrium equation:

 $X_{2(g)}$ + $3Y_{2(g)} \neq 2XY_{3(g)}$

If 2.0 moles of X_2 and 2.0 moles of Y_2 are added to a 1.0 L container, an equilibrium is established in which the $[Y_2] = 0.80$ M. Find the following at equilibrium. (*Use a table.*)

 $[X_2] =$ _____ $[XY_3] =$ _____ Keq = _____

17. The equation: $A_{(g)} + B_{(g)} \neq C_{(g)} + D_{(g)}$ has a Keq = 49 at 25°C.

If 1.0 mole of C and 1.0 mole of D are added to a 0.50 L container at 25°C, calculate the following *at equilibrium*: (*Use a table*.)

[A] = _____ [B] = _____ [C] = ____ [D] = ____

18. In the equilibrium in question 17, what, if anything, would happen to the *value* of the equilibrium constant if the *temperature is increased* and the reaction is exothermic?

 Explain your answer.

19. Write the *Keq expression* for the following reaction: (*Be careful of phases!*)

 $2NaHCO_{3(s)} + heat \neq Na_2SO_{3(s)} + CO_{2(g)} + H_2O_{(g)}$

Chemistry 12

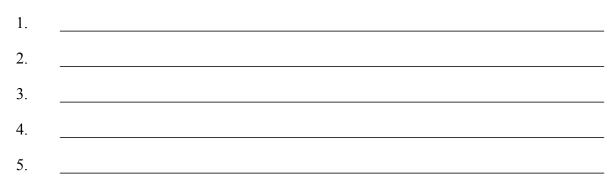
20. The Keq for the reaction:

 $2SO_{2(g)} + O_{2(g)} \neq 2SO_{3(g)}$ is **85.0** at 25°C.

Using this information, calculate the Keq for the reaction :

 $2SO_{3(g)} \neq 2SO_{2(g)} + O_{2(g)}$

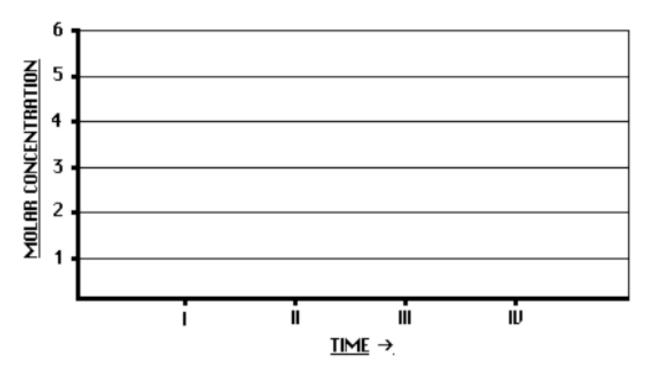
21. Consider the following equilibrium:


 $2SO_{2(g)} + O_{2(g)} \neq 2SO_{3(g)}$ Keq = 6.5 at a certain temperature

What will occur when 1.0 mol of SO₂, 1.0 mol of O₂, and 1.0 mol of SO₃ are placed in a 1.0 L container and allowed to reach equilibrium? Include in your answer a description of what will happen to the concentration of each of the chemicals.

22. Given the equilibrium:

$$CO_{(g)} + H_2O_{(g)} \neq CO_{2(g)} + H_{2(g)}$$
 $\Delta H = -41 \text{ kJ}$


Give 5 actions which could cause this equilibrium to shift to the *left*:

Chemistry 12

23. How does the addition of a *catalyst* affect the Keq for a system? 24. Choose the equilibrium which most *favours the reactants*. a) NO + $1/2O_2 \neq NO_2$ $Keq = 4.4 \times 10^7$ b) $CO + 1/2O_2 \neq CO_2$ $Keq = 4.0 \times 10^{-3}$ c) C + H₂O \neq CO + H₂ $Keq = 3.1 \times 10^3$ $Keq = 1.0 \times 10^{-22}$ d) NO + H₂O \neq NO₂ H₂ 25. Consider the following system: $2SO_{2(g)} + O_{2(g)} \neq 2SO_{3(g)}$ $\Delta H = -99 \text{ kJ/mol}$ What are *four* things which could be done in order to increase the yield of SO₃? 1. 2. 3. 4. 26. Given the equilibrium equation: $XY_{(g)} + heat \neq X_{(g)} + Y_{(g)}$ If initially, at equilibrium, the [XY] = 3.0 M, the [X] = 5.0 M and the [Y] = 6.0 M, draw a graph showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The *temperature is <u>decreased</u>*. Time II - Some X(g) is <u>removed from</u> the system Time III - Some XY(g) is <u>added to</u> the system Time IV - The *total pressure is <u>increased</u>*.

