Science 10- Course Review Unit 1-Chemistry

		Name		
		Date		
		Date due _		
	 Science 10 Chemistry Chapter 8-Elements a Chapter 9-Chemical Chapter 10-Chemical 	and the Periodic Table Formulas and Compound	ls	
Lab	s) If you don't have one or i	nistry Outline" which shows a f you want to view or print a a/teachers/dcolgur and click	any of the activities, g	
1.	When zinc metal is placed in a solution of hydrochloric acid, it fizzes producing hydrogen gas and zinc chloride.			
	a) The reactants are _			
	b) The products are _			
	c) A word equation is:			
2.	2. In the following table, name the 3 major particles in the atom, state where they are located (in the nucleus or on the outside), state their relative mass compared to a proton (assume mass of a proton = 1) and their charge.			
_	Particle	Location	Mass (Proton = 1)	Charge

List the four ma	ain points in Jo	hn Dalton's at o	omic theory.		
1					
2					
3					
4					
					per of
and	, l	out with differe	nt numbers of		
The atomic	of a	an element is th	e average mass	s of the isotope	s which occur in
In a neutral at	om, the numbe	r of electrons i	s always equal	to the number	of
	or th	ne		number.	
According to the	ne model of the	atom proposed	d by Neils Bohr	, electrons mo	ve around the
in		or		W	hen one orbit is
filled, the electr	ons start filling	g the		orbit.	
The first orbit h	nolds	ele	ctrons.		
The second orb	oit holds	elec	etrons.		
The third orbit	holds	ele	ctrons.		
following eleme	ents:				it for each of the
Element		Electrons			
A large (A1)	electrons	in Level 1	in Level 2	in Level 3	in Level 4
Aluminum (Al) Nitrogen (N)					
Calcium (Ca)					
Lithium (Li)					
Argon (Ar)					
115011 (111 <i>)</i>	<u>;</u>			1	

10.	Draw the Bohr models for neutral atoms of each of the following elements.			
	a)	oxygen		
	b)	chlorine		
	c)	phosphorus		
	d)	magnesium		
11.	ording to Bohr, when a sample of an element is energized by heat or electricity, the			
	elec	trons jump to orbits. When they jump back down		
to lower orbits, they give off the energy in the form of				
	The amount of energy released in each jump corresponds to a certain			
	of light. The pattern of different colours of light given off is called the for that element and can be seen through a device called a spectroscope . Because element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has its own set of electrons and orbits, the spectrum given off by each element has the spectrum given off by each element has the spectrum given of the spectrum given give			
	be _used	from that of any other element. What can this be		
	for?			
12.	Wha	at are some practical uses for pure oxygen?		
	What is the main danger of pure oxygen?			

13.	Phosphorus is stored in	Suggest why?
14.	Why is phosphorus considered a dangerous element?	_
	Suggest a practical use for elemental phosphorus	
15.	In order to have the same number of electrons as the no	oble gas neon, sodium
	would have to electron.	
	Sodium is stored in Sug	ggest why?
16.	Is potassium more or less reactive than sodium periodic table. Do you think rubidium would be more	
	than potassium?	·
17.	Name <u>iodine</u> Symbol Atomic number In order to have the same number of electrons as the no	
	would have to electron. Is iodine a meta	l or non-metal?
18.	Classify each of the following elements as an alkali me	etal alkaline earth halogen noble

18. Classify each of the following elements as an alkali metal, alkaline earth, halogen, noble gas or transition metal:

Element	Family
Fe	
Br	
K	
Kr	
Ba	
F	
Pt	
Li	
Ne	
Ra	

19.	Mendeleev arranged the elements in order of		
	and also put them in groups based on similar		
20.	What did Mendeleev do when he came to a space where no known element would fit?		
21.	Vertical columns of the Periodic Table are known as Groups or Chemical		
22.	Elements are no longer listed in order of atomic mass, but in order of atomic		
23.	What is similar about elements in the same family?		
24.	What is the main use of helium?		
25.	What are some uses of argon?		
26.	Where is neon used?		
27.	Where are krypton and xenon used?		
28.	Why is the element radon considered dangerous even though it is not chemically reactive?		
29.	What would alkali metal atoms need to do in order to end up with the same stable electron		
	arrangements as the noble gases?		
30.	What can be said about the chemical reactivity of the alkali metals?		
31.	When alkali metals are put into water, what happens?		
32.	The outer orbits of halogen atoms each have electrons. This is one		
	(more/less) than the nearest noble gas atom.		
33.	In order to achieve the stable arrangement of noble gas atoms, each halogen atom would		
	have to electron.		
34.	Are the halogens metals or non-metals?		

Fill in the following table: Indicators in Known Acids and Bases			
Indicator	Colour in Acid	Colour in Base	
Phenolphthalein			
Bromthymol Blue			
Red Litmus			
Blue Litmus			
Are the pH's of Acid Solution	ns < 7, >7 or = 7?		
Are the pH's of Base Solution	ns < 7, >7 or = 7?		
The more acidic a solution is, the (lower/higher) the pH?			
The more basic a solution is,	the (lower/higher) the pH?		
A solution with a $pH = 7$ is s	aid to be		
An acid HCl is mixed with a	base KOH . Predict the chemic	cal formulas for the two	
products of this reaction	and	This	
type of reaction of an acid re	acting with a base is called _		
List 4 properties (characteristics) all acids have in common:			

-	
-	
/ha	t is the name of the acid found in sour milk?
/ha	t is the name of the acid found in pop?
/ha	t is the name of the acid found in lemons and grapefruit?
/ha	t is the name of the acid found in your stomach?
	t is the name of the acid found in car batteries?
/ha	t is the name of the acid found in rhubarb?
/ha	t is the name of the acid found in apples?
	t is the name of the acid found in vinegar?
	t is the name of the base found in oven cleaner?
cid	spills can sometimes be neutralized by which common compound?
ase	spills can sometimes be neutralized by which common compound?
/ha	t is the chemical formula for common table salt?
/ha	t is the chemical name for baking soda?
/ha	t is the chemical formula for baking soda?
/hic	ch family of elements has just enough electrons in their highest orbits to

60.	If Lithium is combined with Fluorine, the Lithium atom will an
	electron to the Fluorine atom.
61.	When Fluorine has gained an electron, it now has protons (remember, it doesn't lose
	any protons), and electrons. Because protons are positive (+) and electrons are
	negative (-), the charge left over is The Fluorine is no longer a neutral atom, but
	is a charged atom, which is called a Fluor <u>ide</u>
62.	Because the lithium ion (Li ⁺) and the fluoride ion (F ⁻) have opposite charges, they
	each other. This attraction forms an1C bond.
63.	Generally, <i>combining capacity</i> means the number of an atom
	needs to lose or gain in order to have the same number of electrons as a
64.	The combining capacity of chromium (III) is
	The combining capacity of manganese (IV) is
	The combining capacity of iron (II) is
	The combining capacity of copper (I) is
65.	Use the Periodic Table and the method shown to you by the teacher to write the correct formulas for the following ionic compounds.
	a) magnesium iodide
	b) aluminum fluoride
	c) calcium sulphide
	·

d)	rubidium oxide	
e)	sodium phosphide	
f)	iron (III) sulphate	
g)	manganese (IV) oxide	
h)	copper (II) phosphate	
i)	calcium nitrate	
j)	ammonium chloride	
k)	lithium oxalate	
1)	nickel (III) carbonate	
m)	copper (I) permanganate	
n)	ammonium sulphate	

66.	Compounds with only two elements are called	compounds.			
67.	In a binary compound, the non-metal changes it's name so it ends in the letters				
68.	In a compound containing a <i>polyatomic ion</i> , the name of the polyatomic ion				
	(always/sometimes/never) C	changes.			
69.	Write the correct names for the following ionic compounds Spelling counts!				
	a) Na ₃ PO ₄				
	b) K ₂ S				
	c) Rb ₂ SO ₃				
	d) (NH ₄) ₂ CO ₃				
	e) Ba(OH) ₂				
	f) MgSO ₄				
	g) Cs ₂ HPO ₄				
	h) NaHCO ₃				
	i) AgNO ₃				
	j) Na ₃ As				
	k) NH ₄ NO ₃				
	l) Ag ₂ Cr ₂ O ₇				
70.	In an <i>ionic compound</i> , electrons are	_ from one atom			
	to the other. The element that lost electron(s) becomes a (+/-)	ion and the			
	element than gains electron(s) becomes a (+/-) ion. The two of	oppositely charged			
	ions now (attract/repel) each other.				

71.	In a	a <i>covalent</i> compound, one atomm.	electrons with another
72.	Sho	ow the Bohr model for a molecule of F ₂ .	
73.	Giv	ve the formulas for molecules of the seven diatomic elements.	Γhe first one is H ₂ .
74.	Dra	aw the Bohr model for a molecule of ammonia (NH ₃).	
75.	Wr	ite the correct formulas for the following covalent compounds	:
	a)	nitrogen trioxide	
	b)	silicon tetrafluoride	
	c)	nitrogen monoxide	
	d)	selenium hexafluoride	
	e)	phosphorus pentachloride	
	f)	sulphur dioxide	
	g)	dinitrogen tetroxide	
76.	Wr	ite the correct names for the following covalent compounds:	
	a)	PF ₅	
	b)	SO ₃	
	c)	CIF ₆	

- d) SeO₂......
- e) N₂O
- f) N₂Cl₄
- 77. What is meant by a *physical* change?

Give 3 examples of physical changes:

78. What is meant by a *chemical* change?

Give 3 examples of chemical changes:

- 79. Balance the following equations by putting the proper coefficients wherever they are needed.
 - a) Sr + O_2 \rightarrow SrO
 - b) Al + $H_2O \rightarrow Al(OH)_3 + H_2$
 - c) Al + $O_2 \rightarrow Al_2O_3$
 - d) C_5H_{12} + O_2 \rightarrow CO_2 + H_2O
 - e) Na + H_2O \rightarrow H_2 + NaOH
 - f) NaClO₃ \rightarrow NaCl + O₂

g)
$$Ca(NO_3)_2$$
 + $(NH_4)_2SO_4$ \rightarrow $CaSO_4$ + NH_4NO_3

h)
$$C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$$

i)
$$Al(NO_3)_3$$
 + K_2CrO_4 \rightarrow $Al_2(CrO_4)_3$ + KNO_3

j)
$$NH_3 \rightarrow N_2 + H_2$$

k)
$$C_6H_6$$
 + O_2 \rightarrow CO_2 + H_2O

1)
$$S_8 + O_2 \rightarrow SO_2$$

m) HNO₃ + Fe(OH)₃
$$\rightarrow$$
 H₂O + Fe(NO₃)₃

n)
$$Br_2$$
 + $CaCl_2$ \rightarrow $CaBr_2$ + Cl_2

o) Mg + AlCl₃
$$\rightarrow$$
 MgCl₂ + Al