	~ ` `	
Name:	YKEY)	
-	9 1 1	

Period:

Chemistry 11

Solution Worksheet

Directions: Answer in the space provided and be sure to show ALL your work. Have fun ©

1. Which of the following form ionic solutions?

a. NaCl	
ionic	
	a. NaCl

2. Which of the following is a conducting solution?

3. Calculate the molar concentrations of ALL the ions in solutions.

a. 0.750 M Na3PO4(aq) -> 3 Naty + PO4(2g)

b. 0.550 M NaClay) -> I Naclay) + Claz)

c. 0.650 M Ca(OH)2(aq) -> 1 Cacaz) + 20 H (a6)

d. Mix 250.0 ml of 0.350 M NaCl with 375.0 mL of 0.550 M CaCl₂?

$$0.550m \times \frac{375.0mL}{625.0mL} = 0.330$$

$$[N_{2}t]=0.140m$$
 $[C_{2}t]=0.330m$

Simmer Down Inc. ©

$$E(l-]=0.140m+2(0.330m)=0.800m$$

Name:	(KEY)	
Titudian.		_

Period:

Titrations

4. A 112.5 ml sample of vinegar (containing acetic acid, CH₃COOH) was titrated using 0.504 M NaOH. If the titration required 20.65 ml of the NaOH solution, what was the molar concentration of acetic acid in the vinegar?

$$CH_3COOH + NaOH \longrightarrow NaCH_3COO + H2O$$

$$M_AV_A = M_BV_B$$

$$m_A(0.1125L) = (0.504m)(0.02065L)$$

 $m_A = \frac{(0.504 \frac{mol}{L})(0.02065L)}{0.0125L} = 0.0925m$

5. A 25.00 mL sample of an unknown H_2SO_4 solution was reacted with 0.650 M NaOH. Using the date below, calculate the concentration of H_2SO_4 .

Volume of NaOH used:

Run #1 = 36.50 mL's

Run #2 = 36.54 mL's

Run #3 = 38.00 mL's Omit

 $m_{A}V_{A} = m_{B}V_{B}$ $LH_{2}SO_{4}J(25.00mL) = (0.650 m)(36.52mL)$ $LH_{2}SO_{4}J = \frac{(0.650m)(36.52mL)}{25.00mL}$

6. A 10.00 ml sample of HCl was titrated with 0.750 M NaOH. Using the data below, calculate the HCl concentration.

Volume of NaOH used:

Run #1=6.50 mL's o.mit (

Run #2 = 8.54 mL's

Run #3 = 8.60 mL's

Simmer Down Inc. ©

$$m_{A}V_{A} = m_{B}V_{B}$$

 $LHCQJ(10.00mL) = (0.750m)(8.56mL)$
 $LHCQJ = \frac{(0.750m)(8.56mL)}{(10.00mL)}$