CHEM 12 STUDY NOTES

Unit I-1	Definition of REACTION KINETICS and REACTION RATE
	Calculating reaction rate (units used and slope method); calculating rate of products produced based on rate of reactants used
	Methods used to measure reaction rates
	Relationship between rate and: temperature, concentration, pressure, presence of
	catalysts/inhibitors, surface area/phase
	What "nature of reactants" means
	Definition of HOMOGENEOUS REACTION, HETEROGENEOUS REACTION, CATALYST, INHIBITOR
	Graphs of product and reactant concentrations vs time
	Graphs of rate of using reactants and rate of producing products vs time
	Tangent method of calculating reaction rate
	Collision theory: effect of concentration, temperature, pressure
	KE, PE and bond energy
	Exothermic and endothermic reactions
Unit I-2	# of particles vs KE diagrams: how to draw them, what changes them
	Effect of temperature changes on slow reactions (rule of thumb)
	Definition of ACTIVATED COMPLEX, ACTIVATION ENERGY
	Activation energy diagrams, how KE changes as PE changes, why activation energy exists in the first place
	Conditions required for successful reaction
	Relationship between $E_a(f)$, $E_a(r)$ and ?H
	Reaction mechanisms: what are they
	finding overall reaction
	finding missing step
	finding formula of activated complex
	Rate determining step: what is it, identifying it, how concentrations are affected by slow and fast steps
	PE diagrams of a reaction mechanism
	Effect of catalyst on activation energy and number of "humps"
	Identifying the catalyst and reaction intermediate in a reaction intermediate
Unit II-1	Definition of CLOSED SYSTEM, MACROSCOPIC, DYNAMIC EQUILIBRIUM
	What is equilibrium and what must exist or be true at equilibrium: importance of closed system
	What ratios must exist at equilibrium
	Entropy, what is it, relative entropy of different phases
	Predicting whether a reaction goes 100%, 0% or goes to equilibrium; predicting ?H given relative
	entropies and words to describe extent of reaction
	Le Chatelier's Principle: definition, drawing graphs, identifying changes when given graphs
	Conditions needed (temperature, pressure) to get high or low amounts of products
l Init II-2	
01111 11-2	CONSTANT
	What to include and not include in K with examples
	Effect on K_{ac} of reversing or doubling equilibrium equation
	Tricky stuff: Adding/removing a solid or "only" liquid does not shift an equilibrium
	Only temperature affects the value of K_{ca}
	Effect of temperature on K_{eq}
	Diagram: how to select the method to be used when solving a given type of equilibrium problem
	Each type of equilibrium problem and how each step is taken in solving the problem

Unit III-1	Definition of ELECTROLYTE, NON-ELECTROLYTE, MOLECULAR SOLUTION, IONIC SOLUTION
	Identifying ionic vs molecular compounds
	Dissociation of ionic compounds in water; dissolving of molecular compounds in solution
	Conditions of saturation; dissolving vs crystallization reactions
	Using the mass of a substance and the volume it is dissolved in to calculate its molar
concentration	Converting from all to mall and vice verse
	Converting from g/L to mol/L and vice versa
	Experimental determination of solubility by evaporating a saturated solution to dryness
	solubility diagrams. What it means to be below, on and above solubility line, effect of
	temperature: effect of evanorating solvent: lines for evelve and thermic reactions
	Calculating the concentration of dissolved ions when an ionic compound is dissolved
	Dilution calculations and ion concentrations in diluted solutions
	Predicting whether a compound is soluble vs low solubility (trick: Cu^{2+} vs Cu^{+} : alkali ions always
	soluble)
	Na ⁺ and "wanted" negative ion produce a soluble compound: NO_{-}^{-} and "wanted" positive ion
	produce a soluble compound
	Writing a double replacement FORMULA equation (ion swap, assigning charges, predicting
	correct compound formulae, predicting which compound has low solubility)
	Breaking the FORMULA equation down into a TOTAL IONIC equation (leave precipitate intact)
	Identifying SPECTATOR IONS
	Eliminating spectator ions from total ionic equation to make NET IONIC equation
	How to set up a reaction table to decide which negative ions must be added to precipitate
	positive ions one at a time from solution.
	How to set up a reaction table to decide which positive ions must be added to precipitate
	negative ions one at a time from solution.
Unit III-2	Definition of SOLUBILITY PRODUCT EXPRESSION, SOLUBILITY PRODUCT CONSTANT
	Writing the solubility product expression; what it means if K_{sp} is large or small
	Differentiating between SOLUBILITY and SOLUBILITY PRODUCT
	Finding K_{sp} , given the solubility of a compound
	Find the concentration of a dissolved compound, given the K_{sp} (trick: ion concentrations may be
	multiples of the concentration of the compound)
	Predicting whether a precipitate will form when 2 solutions are mixed; how to interpret $Q < K_{sp}$,
	and $Q > K_{sp}$, and $Q = K_{sp}$
	from solution
	How to perform chloride ion titrations; finding an unknown concentration or an unknown volume;
	using titration to help find $K_{ m sp}$; using titration to find percentage purity
	Hardness in water: what causes hardness; temporary vs permanent hardness; eliminating
	temporary hardness; effect of hardness on soap; washing soda - what it is and how it works
	What happens to a solubility equilibrium when the solubility of a salt increases and when the
	solubility of a salt decreases
	Common ion effect; what is it and what effect it has on the solubility equilibrium. Which ions
	have to be added to cause the common ion effect
	Which ions have to be added to increase the solubility of a salt
l Init I\/_4	Definition of ACID, DACE and CALT (Arthuring version)
Unit IV-I	Definition of ACID, BASE and SALT (Armenius version)
	Know the department of balancing an Arrhenius acid-base reaction
	Know the descriptive properties of acid and of bases
	Know what the HVDPONII IM ION is and how to write the dissociation of an acid in water in
terms of	
	hydronium ions
	Definition of ACID and BASE (Brønsted-Lowry): know how to identify a substance as a
Brønsted-	
	Lowry acid or base

Chem 12 Study Notes - 3

Definition of MONOPROTIC, DIPROTIC, TRIPROTIC, POLYPROTIC and AMPHIPROTIC;
how to recognize an amphiprotic substance Know that a Brønsted-Lowry acid-base reaction has an acid and a base on both sides of the equation
Definition of CONJUGATE PAIR, CONJUGATE ACID and CONJUGATE BASE; be able to identify
a conjugate pair, the conjugate acid of a base and the conjugate base of an acid Know that organic acids end in "COOH" and that organic bases end in "NH ₂ " or "NH" Know that a Brønsted-Lowry acid-base reaction essentially involves the transfer of a single
 Definition of STRONG ACID, STRONG BASE, WEAK ACID and WEAK BASE; know that "strong" and "weak" differ in meaning from "reactive", "dilute" and "concentrated" Know that the amount of ionization of an acid/base can be determined by the conductivity of the solution containing the acid/base Be able to identify the six strong acids and the two strong bases using the table "Relative Strengths of Acids"; know that H₂SO₄ is only strong for its first dissociation Know that the conjugate acids of the strong acids are spectator ions (except for HSO₄⁻) and the conjugate acids of the strong bases never act as acids Know that the higher on the left side of the acids table, the stronger the acid; that the lower on the right cide of the acids table, the stronger the acid; that the lower on
Know that the LEVELLING EFFECT is and the effect on the molarity of the hydronium ions in solution Definition of ACIDIC, BASIC and NEUTRAL solutions Know that $[H^+] = [OH] = 1.00 \times 10^{-7}$ M in a neutral solution; know that $[H^+]$ and $[OH]$ are
by changing the temperature Know how to calculate the $[H^{\dagger}]$, given the $[OH^{-}]$, and vice versa
Definition of ACID IONIZATION, ACID IONIZATION CONSTANT, BASE IONIZATION and
IONIZATION CONSTANT; be able to write the K_a expression and K_b expression and understand that the greater the value of K_a (or K_b) the greater the [H ⁺] (or [OH]) in solution Know that $K_a \times K_b = K_w$ for a conjugate acid-base pair; be able to calculate Kb for the conjugate base of an acid having a known value of Ka Know that the side of a Brønsted-Lowry equilibrium having the weaker acid will be favoured Alternately, know that $K_{eq} = \frac{K_a (reactant acid)}{K_a (product acid)}$ and that $K_{eq} > 1$ implies products are favoured
 Know that the stronger acid and stronger base are on the same side of the equation Know that all salts are 100% dissociated in water Definition of pH, pOH and pK_w Know how to convert from [H⁺] to pH and vice versa Be able to use pH + pOH = pK_w = 14.00 at 25°C to calculate pH given pOH and vice versa Know that only the digits after the decimal of a pH are significant Know that the pH and pOH of pure water both decrease (or both increase) when the temperature changes Know that the lower the pH of a solution, the greater the conductivity Be able to sketch the pH scale and relate pH to pOH, [H+] and [OH–], understanding that the lower the pH the greater the [H⁺] Understand that a solution having pH > 7 is basic and a solution having a pOH > 7 is acidic

Understand that a change in [H+] by one power of 10 changes the pH value by 1 Be able to calculate the pH of a solution made by mixing known volumes of a strong acid and a strong base, each of which has a known concentration.

Chem 12 Study Notes - 4

	Be able to calculate the amount of a strong acid (say) that produces a specified pH in a known volume of a strong base having a known concentration
	Know the definition of HYDROLYSIS
	Be able to identify spectator ions in a solution
	Know the procedure for determining the hydrolysis behaviour of a salt in water Be able to predict whether an aqueous solution of a salt is: pourtal, acidic or basic; whether a
salt	be able to predict whether an aqueous solution of a sail is. neutral, actuic of basic, whether a
ouit	containing an amphiprotic ion is acidic or basic in solution; whether a salt produces an acidic
or	basic solution when both the anion and cation undergo hydrolysis; how to deal with aqueous metal ions such as $Fe(H_2O)_6^{3?}$
	Know how to distinguish a reaction between two ions in solution versus a reaction between an ion and water
	Understand that both the strength of an acid and its solubility have an effect on the number of ions produced in solution and the pH of the solution
Unit IV-3	Be able to calculate the pH of a weak acid solution, given its K_{a} and concentration
	Be able to calculate the concentration of a weak acid solution, given its $K_{ m a}$ and pH
	Be able to calculate the K_a of a weak acid, given its pH and concentration
affect	Be able to make the approximation that the small amount dissociation of weak acid does not
anect	the concentration of the acid, to an approximation of 5% error
	Be able to calculate the percentage dissociation of a weak acid
	Know when NOT to assume the amount of acid dissociation is negligible
	Understand that only the 1st ionization of a polyprotic weak acid affects the p K_a of a solution Understand that "H ₂ CO ₃ " is treated as "CO ₂ + H ₂ O" and "H ₂ SO ₃ " is treated as "SO ₂ + H ₂ O" Re able to colculate the pH of a weak base solution, given its concentration (and baying to
	calculate K_b by looking up the K_a of the conjugate acid)
	Be able to calculate the concentration of a weak base solution, given its pH (and having to calculate K, by looking up the K of the conjugate acid)
	Be able to calculate the K_b of a weak base, given its pH and concentration
	Given the concentration and pH of a weak base solution, be able to calculate the K_a value of the conjugate acid
	Given the concentration and pH of a weak acid solution, be able to calculate the K_b value of the conjugate base
	Be able to use the pH of a saturated salt solution (and look up the K_a value or work out the K_b value) to calculate the K_{sp} of the salt
	Be able to use the K_{sp} of a saturated salt (and look up the K_a value or work out the K_b value) to calculate the pH of the salt solution
Unit IV-4	Definition of TITRATION and EQUIVALENCE POINT (or STOICHIOMETRIC POINT)
	Understand that significant digits are always important in titration calculations
	Be able to use the known molarity of a base, the known volumes of the acid and base used in
	the titration, and the stoichiometric ratio to calculate the unknown molarity of the acid
	in the titration, and the stoichiometric ratio to calculate the unknown volume of the base Be able to use "millimoles" in a titration calculation
	Be able to write a partial neutralization equation for a polyprotic acid
	Be able to use the known molarities of the acid and base, and the known volumes of the acid and
	base, to calculate the stoichiometric ratio of the reaction and the formula of the salt produced Be able to use titration data to calculate the percentage purity of an acid or base

Be able to use titration data to calculate the molar mass of an unknown acid or base Understand how to average titration volumes, including when to omit a piece of data Understand that titrating equal volumes and concentrations of a weak monoprotic acid and a

strong monoprotic acid requires the same amounts of base, and why this is so Definition of an INDICATOR

Chem 12 Study Notes - 5

	Understand that an indicator is in its conjugate acid form in acidic solutions and in its conjugate base form in basic solutions; similarly, understand that when
	Understand that at the END POINT or TRANSITION POINT of an indicator, the [conjugate acid] = [conjugate base]
	Understand that an indicator changes colour when the $[H^{\dagger}]$ in a solution equals the K _a value of
the	indicator and that the plus of a colution equals the pK value of the indicator
	Understand that an indicator usually changes colour over a range of about 2 pH units Be able to use the pH at the transition point of an indicator to calculate the K_a value of the
indicator	Other the K webe of an indicator and the calcumption of the continue to acid and have be able to
	predict the colour of the indicator, and the colours of the conjugate acid and base, be able to predict the colour of the indicator in solutions having different pH values. Understand how to create a UNIVERSAL INDICATOR
	Understand that if an indicator changes colour more than once it has more than one removable proton (is polyprotic)
	Be able to predict the colour of a mixture of two or more indicators at different pH values Be able to determine the pH range of a solution, given the colour of the solution with various indicators
	Definition of STANDARD SOLUTION and PRIMARY STANDARD Know the properties of a primary standard
	Understand the difference between a standard and a promary standard Be able to write a procedure for standardizing a solution
base	Know how to draw the pH versus volume curve for the titration of a strong acid with a strong
	Know how to draw the pH versus volume curve for the addition of a strong base to a weak acid Know how to draw the pH versus volume curve for the addition of a strong acid to a weak base Understand that the pH changes extremely rapidly at the stoichiometric point of a strong acid- strong base titration, a strong base-weak acid titration and a strong acid-weak base titration Understand that pH = 7 at the stoichiometric point of a strong acid-strong base titration Understand that pH = 7 at the stoichiometric point of a weak acid-strong base titration Understand that pH > 7 at the stoichiometric point of a weak acid-strong base titration Understand that pH < 7 at the stoichiometric point of a strong acid-weak base titration Be able to use the pH at the "half-volume" point to calculate the K_a of a weak acid or the K_b of a
	weak base Be able to use the initial pH and the pH at the "half-volume" point to calculate the K_a of the weak
	Be able to choose a suitable indicator for a strong acid-strong base titration, a weak acid-strong base titration and a strong acid-weak base titration
	Know that the salt of a STRONG ACID and a STRONG BASE is NEUTRAL, that the salt of a
weak	acid and a STRONG BASE is BASIC, and that the salt of a STRONG ACID and a weak base
	Know that the pH at the "half-volume" point does not change when the molarity of the weak acid or base is changed
Unit IV-5	Definition of a BUFFER
	Know that a buffer is created when roughly equal concentrations of a weak acid and its conjugate weak base are mixed
	Understand that simply having a weak acid in solution does NOT create a buffer, even though small amounts of the conjugate base are present in equilibrium

Know that diluting a buffer has no effect on its pH

Know that the purpose of using a buffer is to have a solution that can neutralize substantial amounts of either an acid or base without appreciably changing the pH of the solution

Know that adding an acid to a buffer produces a very small decrease in the buffer's pH and that adding a base to a buffer produces a very small increase in the buffer's pH

Be able to create an acidic or basic buffer that has its pH in a given range Know that whenever a weak acid or base is titrated, a buffer solution is created in the "halfvolume"

region

Know how to experimentally determine whether a solution is or is not a buffer

Chem 12 Study Notes - 6

Know that the total moles of acid used in preparing a buffer sets a limit on the moles of base that the buffer can neutralize

Know that a METAL OXIDE produces a basic solution and be able to write an equation showing how the metal oxide reacts with water

Know that a NONMETAL OXIDE produces an acidic solution and be able to write an equation showing how the nonmetal oxide reacts with water

Understand that dissolved CO_2 causes even pure water to have a slightly acidic pH Understand that ACID RAIN is rain that is more acidic than can be created by CO_2 alone Know the reaction equations associated with the production of acid rain Know that $CaCO_3$ (limestone) in a lake can neutralize some of the acid rain that falls into the

lake

Know some of the problems associated with acid rain

Unit V-1 Definition of ELECTROCHEMISTRY, ELECTROCHEMICAL CELL, HALF-CELL, HALF-CELL REACTION, OXIDATION REACTION, REDUCTION REACTION, REDOX REACTION, REDUCING AGENT and OXIDIZING AGENT

Be able to decide whether a substance is being reduced or oxidized and know how to decide the number of electrons to be added and to which side of the half-cell reaction

Be able to break a redox reaction into two half-cell reactions and balance the half-cell reactions Definition of OXIDATION NUMBER

Know that the oxidation number of an element is zero

Be able to assign oxidation numbers to all the elements in a compound or molecular ion Be able to classify a reaction as a redox or non-redox reaction

Know that the number of attached oxygens increases during an oxidation reaction and decreases during a reduction reaction

Be able to predict the reaction that occurs when two half cells are combined

Know that the species being reduced is higher on the Table of Reduction Potentials than the species being oxidized and that a spontaneous reaction occurs only when the species being

reduced is above and on the left side and the species being oxidized is below and to the right Know that if a half-cell reaction involves H^{\dagger} , there is no reaction unless an acid is present Understand that some species (Fe²⁺, Sn²⁺, Cu⁺, H₂O₂) are found on both the left and right sides

the Table

Know that the higher on the left side of the Table, the stronger the tendency to reduce; the lower on the right side of the Table, the greater the tendency to oxidize

Be able to order a set of reduction reactions from highest to lowest tendency to occur, given information on how certain species react with each other

Be able to balance a half-reaction by balancing the number of major atoms, adding H_2O to balance O's and adding H^+ to balance H's

Be able to balance a half-reaction in basic conditions

Know that if O_2 , O_3 , H_2 or H_2O_2 are involved in a half-reaction, no major species are present Be able to assign a change in the oxidation number of an atom; know that the change in

oxidation number of an atom is equal to the number of electrons gained or lost by the atom Know that the oxidation number decreases during a reduction reaction and increases during an oxidation

Be able to balance a redox equation using the method of half-reactions

of

Definition of DISPROPORTIONATION

Be able to use a redox equation to solve single equation titration problems Be able to use linked redox equations when solving titration problems Know that redox titrations involving $KMnO_4$ are "self-indicating"

Definition of ELECTRODE, ANODE, CATHODE

Know that oxidation occurs at the anode, that reduction occurs at the cathode, that electrons flow from anode to cathode, that cations flow toward the cathode and anions flow toward the anode, and that electrons only flow in the external circuit and not through the solution

Chem 12 Study Notes - 7

Unit V-2 Definition of VOLTAGE, STANDARD REDUCTION POTENTIAL, STANDARD STATE Know that the voltage for the hydrogen half cell is assigned arbitrarily and that all other half-cell

voltages are assigned relative to the hydrogen half cell Know that standard reduction potentials only exist at standard state

Know that reversing a half-reaction changes the sign of its E^o value and that the E^o value is not changed if the half-reaction is multiplied by 2, 3, etc.

Know that the potential of a redox reaction is calculated from: $E_{CELL}^{\circ} = E_{RED}^{\circ} - E_{OX}^{\circ}$ and that the cell potential is the voltage gap between the reduction and oxidation half-cells

Know that a reaction is spontaneous if E_{CELL}^{o} is positive and non-spontaneous if E_{CELL}^{o} is negative

Know that even if the cell potential of a reaction is large and positive, the reaction is not guaranteed to occur because the activation energy for the reaction may be too high Know that the surface area of an electrode has no effect on the cell potential

Know that Le Chatelier's Principle can be applied to half cells, so that (for example) increasing

concentration of a substance which reduces will increase its reduction potential

Know that as a cell continues to operate the reduction reaction has less tendency to occur and the oxidation reaction has less tendency to occur and therefore the cell voltage decreases and eventually becomes zero

Know that when more than one reduction reaction can occur, the reduction having the highest tendency to occur (highest on the Table) will occur preferentially.

Know that when more than one oxidation reaction can occur, the oxidation having the highest tendency to occur (lowest on the Table) will occur preferentially.

Understand that when given a list of ionic compounds that are involved in a spontaneous redox reaction, the compounds must first be broken into ions and then the ion(s) with the highest tendency to reduce will react preferentially and the ion(s) with the highest tendency to oxidize will react preferentially.

Know that the recharging reaction of a rechargeable battery is the opposite of the discharging reaction.

Know that fuel cells are reaction chambers that allow a continuous flow of reactants to come in and a continuous flow of products to flow in, while producing an electrical current as an electrochemical reaction occurs.

Know that fuel cells are pollution free and operate at very high efficiencies (80%).

Know that corrosion of metals is caused by the reduction of oxygen (in air) and water:

 $1/2 O_2(g) + 2 H^+(10^{-7} M) + 2 e^-$? $H_2O(I); E^\circ = 0.82 V$

while the metal (such as iron) undergoes oxidation.

Know that metals can be protected from corrosion by:

- applying a protective layer (such as paint)
- coating the metal with a metal that does not corrode
- connecting the metal to be protected with another metal that has a greater tendency to oxidize (such as Mg or Zn). This process is called "cathodic protection".
- eliminating oxygen from the environment, preferentially in addition to making the environment very basic.

the

Unit V-3 Know that ELECTROLYSIS involves adding electrical energy to a mixture so as to make a nonspontaneous reaction occur.

Know that an ELECTROLYTIC cell is spontaneous, as opposed to an electrolysis cell.

Know that if platinum, gold or carbon electrodes are used in an electrolysis, these electrodes are INERT and only allow another reaction to occur.

Know that in an electrolysis reaction, the highest reduction reaction on the Table still goes preferentially and the lowest oxidation reaction on the Table still goes preferentially, BUT now the reduction reaction is BELOW the oxidation.

Know that the cell potential of an electrolysis reaction is NEGATIVE and that the voltage required to be applied is at least equal to the absolute value of the cell potential.

Chem 12 Study Notes - 8

Know that when water is present in a reaction, one of the following reductions must be considered as possible reactions:

 $2 H^+ + 2 e^-$? $H_2(g)$ [if acid is present]

 $2 H_2O + 2 e^-$? $H_2(g) + 2 OH^-(10^{-7} M)$ [if solution is neutral]

Know that when water is present in a reaction, one of the following oxidations must be considered as possible reactions:

[if acid is present in the water] $1/2 O_2(g) + 2 H^+ + 2 e^ H_2O(I)$?

 $1/2 O_2(g) + 2 H^+(10^{-7} M) + 2 e^-$ [if the water is neutral]

 $H_2O(I)$? Know that if Cl or Br are present in an aqueous electrolysis solution, the Cl and Br will oxidize before the water will (this is an exception)

Know that when ELECTROPLATING with a metal, the following setup should be used:

- The metal to be plated out should be present as ions in solution
- The substance which is to be metal plated should become the CATHODE.
- The anode should be made out of the same metal to be plated out at the cathode.
- The electron flow must be from anode to cathode

Know that when ELECTROREFINING an impure metal, the following situation occurs:

- The anode must be the slab of impure metal
- The cathode must be made out of the pure metal which is be electrorefined (the metal which exists in the largest amount in the impure metal)
- At the anode, the metal to be refined will oxidize AND all metals present which have a greater tendency to oxidize will also oxidize.
- At the anode, NO metal above the metal to be refined will oxidize. Theses latter substances will simply fall off the electrode ("anode sludge")
- At the cathode, only the metal to be refined will be reduced. All other ions in solution will remain behind, unreacted.

CHEM 11 STUDY NOTES

- **Unit I** Know all safety rules, location of safety and protective equipment and how to use equipment Order of treating multiple emergencies, how to deal with controlled fires vs uncontrolled fires Dealing with broken glass and excess chemicals
- **Unit II-1** How to set up a unit conversion problem, including multiple conversions Memorize metric conversions, including: $1 \text{ mL} = 1 \text{ cm}^3$, $1 \text{ m}^3 = 10^3 \text{ L}$, $1 \text{ t} = 10^3 \text{ kg}$ How to set up and use metric conversions, including conversion of numerator and denominator How to find derived quantities and derived units
- Unit II-2 How to perform density calculations, memorize water's density, when an object sinks or floats Significant figures: how to count, how to count when no decimal, certain vs uncertain digits, defined (counting) numbers, leading vs trailing zeroes Accuracy vs precision

The rules for reading a scale: 1st digit(s), figuring out the next digit, guessing the last digit Reading a scale when a pointer is exactly on a marked line Experimental uncertainty: how to write, how to interpret, how to estimate Rounding answers to the correct # of significant digits: adding/subtracting, multiplying/dividing

Unit III-1 Definitions (in own words, with examples when applicable) Special comments on: hypotheses, theories and laws properties of solids, liquids and gases vapour versus gas Relationships involving: viscosity, diffusion rate, vapour pressure, boiling temperature, gas compressibility Diagram: classification of matter Compare and contrast: compound vs mixture element vs compound mechanical mixture vs solution

Exception: water is always the solvent

Unit III-2 Definitions (in own words, with examples when applicable) Types of physical separation methods, when each is used and how each is performed Special things to know when using some separation methods (eg. can't filter solute from solution) Use of %'s with solvent extraction Chromatography theory Summary of when to use each method of physical separation (what tells you to "use this method") Comparison of heat involved in chemical vs physical changes phase changes and phases present; %'s of phases at a given point in a Diagram: phase change KE involved in phase changes and temperature changes Drawings of KE motion in a molecule Unit IV Definitions (in own words, with examples when applicable)

Charges you are expected to memorize (by columns)
 Stock naming system (Roman numerals)
 Naming monatomic ions, including phosphide and nitride
 Rules for writing the formula of ionic compounds; tricks (double word anion names, mercury(I) ion)
 Rules for naming ionic compounds; finding the charge of ions so as to use the Stock system
 Molecules to memorize: water and ammonia
 Naming hydrates and writing their formulae
 Rules for writing the formula of a binary covalent compound
 Rules for naming a binary covalent compound; tricks ("mono" used with 2nd word, not 1st)
 Common acids to be memorized
 Colours of ions to be memorized
 How to know when to name a compound as an ionic compound vs a binary covalent compound

Chem 11 Study Notes - 2

UNIT V-1	Memorize Avogadro's Hypothesis Given the volumes of 2 gases that react, predict the molecular formula of the product (Exercise
	 Definition of the MOLE and MOLAR MASS How to calculate the molar mass, given the formula of a compound (Ex. 6) How to calculate the molar mass of a hydrate, given its formula (Ex. 7) How to convert from moles to mass (and vice versa), using the molar mass (Ex. 8,9) Calculating the molar mass, given the mass and number of moles (answer is in g/mol) (Ex. 10) What MOLAR VOLUME is; what STP is
11,12)	How to convert from moles to gas volume at STP (and vice versa), use 1 mol = $22.4 L$ (Ex.
. ,	What AVOGADRO'S NUMBER is (6.02×10^{23}) . Know that Avogadro's Number is just a number (like a dozen) and doesn't have any special units
)	How to convert from moles to $\#$ of particles (and vice versa), use 1 mol = 0.02 x 10 (Ex. 13-b,
b)	How to calculate the mass of 1 mol of a thing, given the mass (in grams) of ONE thing (Ex. 18-
- /	How to convert from molecules to number of atoms in the molecule (Ex. 21) How to know when to multiply a series of unit conversions by the number of atoms in a particle and when not to add the extra conversion
	Memorize the diagram for converting between mass, gas volume at STP, moles and # of particles
	How to set up a multiple conversion to convert, say, from mass to moles to number of particles How to calculate the density of a gas at STP, given its chemical formula (Ex. 25) How to calculate the volume of a solid or liquid, given the density and either the number of
	particles or the number of moles (Ex. 32) How to calculate the number of particles or the number of moles of a solid or liquid, given the
	How to calculate the molar mass of a gas at STP, given the volume and the mass (Ex. 28) How to calculate the molar volume of a solid/liquid, given its density and chemical formula (Ex.
33)	How to calculate the density of a solid or liquid, given its chemical formula, its volume and the
	number of moles of it (Ex. 34) How to calculate the volume of a solid or liquid, given its chemical formula, its density and the number of moles of it (Ex. 41-f)
UNIT V-2	How to calculate the percentage composition of a compound, given its formula How to calculate the percentage of water in a hydrate, given the chemical formula of the hydrate What the EMPIRICAL FORMULA is
	How to find the empirical formula, given the percentage composition of a compound How to find the empirical formula, given the masses of each type of atom present How to "clear fractions" when the mole ratio in an empirical formula ends in 0.20, 0.25, 0.33,
	Summarize the methods use to calculate the molar mass How to find the molecular formula, given the empirical formula and the molar mass
UNIT V-3	Definition of CONCENTRATION, CONCENTRATED and DILUTE Definition of MOLAR CONCENTRATION and MOLARITY What the units for molar concentration are, what "M" and "MOLAR" mean, what [NaCI] means What is the special flask's name used to make up exact volumes, why the flask neck is narrow, what to do if too much liquid is added, why the liquid is added after the solid is in the flask
62)	How to calculate the molarity, given the volume and the mass or moles of solid present (Ex. 59) How to find the volume, given the molarity and the mass or moles of chemical dissolved (Ex.

How to find either the mass or moles of solid dissolved, given the molarity and volume (Ex. 61)

	How to write the experimental procedure to prepare a known volume and known molarity (Ex.
60)	 How to calculate the density of a pure liquid or solid, given its molarity (Ex. 67) How to calculate the molarity of a pure liquid or solid, given its density (Ex. 65) How to calculate the molarity of a substance in solution, given the mass of a hydrate of the substance and the volume of the solution made (Ex. 59-e) How to calculate the mass or moles of a hydrated substance, given the concentration of the "unhydrated" substance and the volume of the solution (Ex. 60-f)
	Chem 11 Study Notes – 3
	 How to calculate the diluted concentration of a solution, given the original concentration and the volumes of the solution used and the water added (Ex. 78) How to calculate the diluted concentrations of two DIFFERENT chemicals when they are mixed together, given the original concentrations and volumes of the chemicals (Ex. 90) How to calculate the combined concentration, given the concentrations and volumes of two different solutions containing the SAME chemical (Ex. 79) How to calculate the volume of a concentrated chemical needed to make a given volume of a dilute chemical (Ex. 82)
dilute	How to calculate the molarity of a concentrated chemical used to make a given volume of a
	 chemical (Ex. 102-e) How to calculate the molarity of a mixture, given the masses of two identical chemicals in two different volumes (Ex. 84) How to calculate the molarity of a solution when the volume is "boiled down", given the original concentration and the original and final volumes (Ex. 85)
UNIT VI-1	 Definition of CHEMICAL REACTION EQUATION, CHEMICAL WORD EQUATION, REACTANT, PRODUCT and COEFFICIENT Definition of OPEN SYSTEM and CLOSED SYSTEM Definition of CONSERVED and CONSERVATION LAW Law of Conservation of Mass: what must be true if this law holds and what you see if the law is violated Law of Conservation of Atoms: what must be true if this law holds and what you see if the law is violated Law of Conservation of Electrical Charge: what must be true if this law holds and what you see if the law is violated Law of Conservation of Electrical Charge: what must be true if this law holds and what you see if the law is violated Law of Conservation of Energy: what must be true if this law holds and what you see if the law is violated How to identify a good atom to start with when balancing reaction equations Procedure for balancing a chemical reaction equation How to use fractions when balancing a reaction equation How to write the phases SOLID, LIQUID, GAS and AQUEOUS in a reaction equation Which elements are diatomic How to interpret CRYSTAL, POWDER and PRECIPITATE in a chemical word equation How to translate a chemical word equation into chemical symbols, including phases
UNIT VI-2	Synthesis or Combination Reaction: what it is, how to recognize it, how to predict the products Decomposition Reaction: what it is, how to recognize it, how to predict the products Single Replacement Reaction: what it is, how to recognize it, how to predict the products Double Replacement Reaction or Metathesis Reaction: what it is, how to recognize it, how to predict the products Neutralization Reaction: what it is, how to recognize it, how to predict the products Know that ACID + BASE produce SALT + WATER Combustion Reaction: what it is, how to recognize it, how to predict the products What a HYDROCARBON is What special products are formed if the reactant in a combustion contains oxygen or sulphur

	Bond breaking requires an input of energy; bond making gives off energy; energy is measured in
	KILOJOULES (KJ) Definition of EXOTHERMIC REACTION and ENDOTHERMIC REACTION
	Definition of ENTHALPY and ?H
	Exothermic reactions are "losers": they give off heat, energy flows from reactants to surroundings, ?H is negative, heat is on product side, reactants have more energy than products, combustion is an example of an exothermic process Endothermic reactions are opposite of exothermic reactions: they absorb heat, energy flows from
	surroundings to reactants, ?H is positive, heat is on the reactant side, reactants have less energy than products, the melting of ice is an example of an endothermic process
	Chem 11 Study Notes – 4
UNIT VII	Definition of STOICHIOMETRY
•••••	How to set up a conversion factor involving two chemicals, given their coefficients
	How to calculate the mass, number of molecules or volume at STP of one substance, given the mass, number of molecules or volume at STP of another substance
	How to calculate the combined volume of gases produced by reacting a substance
	How to calculate the mass of a product, given the molarity and volume of a product How to calculate the molarity of a reactant, given the volume of the reactant and the mass of the product
	Definition of TITRATION, EQUIVALENCE POINT or STOICHIOMETRIC POINT
	How to calculate the unknown concentration of an acid, given the concentration of the base it is
	titrated with and the volumes of both the acid and the base How to calculate the unknown volume of an acid, given the volume and concentration of the
base	now to calculate the unknown volume of an acid, given the volume and concentration of the
	it is titrated with and the concentration of the acid
	Definition of LIMITING REACTANT and EXCESS REACTANT
	How to calculate the mass of product produced when two substances react, one of which is in excess
	How to calculate the mass of excess reactant left over after a reaction
UNIT VIII-1	Know what the Rutherford model of the atom is
	Know what the Bohr model of the atom is, and what the Rutherford–Bohr model is
	Know the symbols, charges, masses and location of the atomic particles (electron, proton and
	Neutron) Definition of ATOMIC NUMBER and ATOMIC MASS
	Know that atoms having the same atomic symbol have the same number of protons, and vice versa
	Know that the atomic number equals the number of protons, and equals the charge on the nucleus and equals the number of electrons in a neutral atom
	Know that the atomic mass equals the number of protons plus neutrons, and therefore the
	Know that adding electrons to a neutral atom creates a NEGATIVE ION having a charge equal to the number of electrons added
	Know that removing electrons from a neutral atom creates a POSITIVE ION having a charge equal to the number of electrons removed
	Definition of an ISOTOPE
	Know that isotopes have the same atomic symbol and overall charge, only differing in mass
	having different isotopes of one type of atom Know that ² H is DEUTERIUM and ³ H is TRITIUM
	Know how to fill in a table such as that shown in Exercise 22
	Know how to calculate the average molar mass of a mixture of isotopes, given the % of each isotope
	Know that the "n" value describes the number of the shell and that the n-th shell has n types of orbitals possible

	Know that the subshells are "s" (1 orbital), "p" (3 orbitals). "d" (5 orbitals) and "f" (7 orbitals) Know how to draw the energy levels for hydrogen and for a polyelectronic atom Know the rules which govern the placement of electrons in orbitals
	Know how to write the electron configuration of a neutral atom
	Know how to find the CORE set of electrons and how to write an electron configuration using CORE NOTATION
	Know the electron configuration exceptions of Cr and Cu
	Know how to write the electron configurations of positive and negative ions Definition of VALENCE ELECTRONS and how to identify them in an atom or ion
	Chem 11 Study Notes – 5
UNIT VIII-2	Know that the atoms in the periodic table are listed according to their atomic numbers; know the PERIODIC LAW
	Definition of PERIOD, GROUP/FAMILY, REPRESENTATIVE ELEMENT, TRANSITION METAL, ALKALI METAL, ALKALINE EARTH METAL, HALOGEN, NOBLE GAS, LANTHANIDE and ACTINIDE. Be able to locate each group on the periodic table.
	Know the properties of the METALS, NONMETALS and SEMICONDUCTING NONMETALS and where each type of element is located on the periodic table
	Know that elements become LESS metallic going from left to right across the periodic table and that elements become more metallic going down each column of the periodic table Definition of ELECTROSTATIC FORCE, know that opposite charges attract, like charges repel,
	the closer two charges are the more they interact, and the greater the charges involved the greater the interaction between the charges Know that the charge on the nucleus increases going from left to right across the periodic table
6 m a m a	and that all the electrons in a given shell are assumed to have the same average distance
from	the nucleus
	Know that the size of atoms increases going down a column and the size of atoms decreases going from left to right across the periodic table, and why these trends occur
closed	Definition of OPEN SHELL and CLOSED SHELL and now to identify atoms or ions having
	shells
	possessed by an atom or ion
	Definition of VALENCE OF AN ATOM is and how to find the valence Definition of IONIZATION ENERGY and how ionization energy changes going down a column
and	going from left to right across the periodic table
	Understand why each point on the graph of Exercise 52 has a particular value relative to other points on the graph
	Definition of IONIC BOND, how to predict when an ionic bond forms, understand that the smaller the ions involved the stronger the bond, and that the greater the charge on the ions the stronger the bond
	Definition of ELECTRONEGATIVITY and how electronegativity changes going down a column and going from left to right across the periodic table
	Understand the relationship between ionization energy and electronegativity
	Know the probable charges formed by atoms when they become ions
	Know that negative ions are larger than the corresponding neutral atom and why this occurs Know that positive ions are smaller than the corresponding neutral atom and why this occurs
	smaller the atoms involved the stronger the bond, and that the more electrons involved in
the	b and the store over the band
	bond the stronger the bond Definition of OCTET RULE
	Know that covalent bonds are very strong Know the relationship between the number of shared electrons and bond length

Understand that whereas a molecule may be made from strong covalent bonds, the bonds holding one molecule next to another are much weaker, so that when the compound melts the covalent molecules separate from each other but the molecules stay intact Know how to predict the formula of covalently-bonded binary compounds Definition of INTRAMOLECULAR FORCE, INTERMOLECULAR FORCE, LONDON FORCE and
Understand that London forces are extremely weak, that substances held together by London forces have very low melting temperatures and that the greater the total number of electrons possessed by a molecule the stronger the London force it creates Know that London forces are only important with noble gases and adjacent molecules containing covalent bonding (that is, between species containing closed shells) Know how to write the Lewis Structures of ions and ionic compounds Know how to write the Lewis Structure of covalent compounds that obey the octet rule
Chem 11 Study Notes – 6
Know how to write the Lewis Structures of covalent compounds that are electron deficient, have an expanded octet or have an odd number of electrons

	Know the properties of the noble gases, including type of bonding in the solid state, relative melting temperatures, reactivity and ionization energy
	Know the properties of the alkali metals, including relative melting temperature, reactivity, ions formed, ionization energy and electrical conductivity
	Know the properties of the alkaline earth metals, including relative melting temperature, relative reactivity, ions formed and ionization energy
	Know the properties of the halogens, including types of bonding in the solid state, relative melting temperatures, reactivity and ionization energy
UNIT IX	Definition of SOLUTION, SOLVENT, SOLUTE, SATURATED, UNSATURATED and SOLUBILITY
	Know what information is required to specify a solubility
	Know that a saturated solution of a solid must have some undissolved solid present and that the solubility of a solid usually increases with increased temperature
	Know that a solution that is saturated with one substance can still dissolve a different substance
	Know the following facts about conductivity in solutions: electrical conductivity requires the
	presence of ions; pure water contains a very small concentration of H' and OH ions;
	organic substances (covalent compounds) generally do not form conducting solutions; the greater the concentration of ions in solution the greater the electrical conductivity; acids
	bases and salts (ionic compounds) form conducting solutions; solid ionic compounds
do not	
	conduct electricity but melted ionic compounds do;
	Know how do decide whether a substance will be electrically conducting or honconducting Know that both motals and solutions of ions are electrical conductors.
	Definitions of DIPOLE-DIPOLE FORCES, POLAR and NONPOLAR
	Be able to predict whether a covalent bond will be polar or nonpolar
	Definition of an ASYMMETRICAL MOLECULE; be able to predict whether a molecule will be
polar	
	or nonpolar based on its symmetry
	Know that dipole-dipole forces are weak, similar to London forces
	predict whether the bonding in a substance involves hydrogen bonds; know that hydrogen bonds are much stronger than London forces and dipole-dipole forces but much weaker than
	Covalent and ionic bonds Know what the statement "Like dissolves like" means with respect to polar versus perpolar
	solvents dissolving polar versus nonpolar solutes; be able to explain the chemical reasoning behind the statement
	Be able to identify the most important type of bonding between two particles
	Definition of SOLVATION, IONIC SOLID, MOLECULAR SOLID, CRYSTAL LATTICE, DISSOCIATION REACTION and IONIZATION REACTION

Be able to write a dissociation or ionization reaction

Be able to calculate the individual concentrations of the ions that occur when a given molarity of an ionic compound dissolves in water

Be able to calculate the concentrations of the ions that occur when two ionic solutions are mixed