\qquad

Chemistry 11

Stoichiometry Worksheet \#2

Directions: Answer in the space provided. Be sure to show ALL your work. Please highlight your answer for each question. Watch for sig figs...and Darth Vader ;)

1. Consider the reaction:

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+4 \mathrm{NO}_{(\mathrm{g})}
$$

a. What mass of $\mathrm{NO}_{(\mathrm{g})}$ is produced when $2.00 \mathrm{~mol}^{\text {of }} \mathrm{NH}_{3}{ }_{(\mathrm{g})}$ are reacted with an excess of $\mathrm{O}_{2(\mathrm{~g})}$?
b. What mass of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is produced when 4.00 mol of $\mathrm{O}_{2(\mathrm{~g})}$ are reacted with an excess of $\mathrm{NH}_{3}(\mathrm{~g})$?
c. What volume of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP is required to react with 3.00 mol of $\mathrm{O}_{2(\mathrm{~g})}$?
d. What volume of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP is required to produce 0.750 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$?
2. Pentane, $\mathrm{C}_{5} \mathrm{H}_{12(I)}$, burns according to the reaction:

$$
\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{l})}+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a. What mass of $\mathrm{H}_{2} \mathrm{O}$ is produced when 100.0 g of $\mathrm{C}_{5} \mathrm{H}_{12}$ is burned? Assume an excess of O_{2}.
b. What mass of $\mathrm{C}_{5} \mathrm{H}_{12}$ is required to produce 90.0 L of CO_{2} at STP? Assume an excess of O_{2}.

$$
\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{l})}+8 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

c. What volume of O_{2} at STP is required to produce 70.0 g of CO_{2} ? Assume an excess of $\mathrm{C}_{5} \mathrm{H}_{12}$.
3. How many litres of hydrogen gas will be produced by 5.72 g of zinc in the single replacement reaction of zinc and hydrochloric acid at STP?
4. Calculate the number of grams of nitrogen gas required to make 1.22 L of ammonia at STP. Assume an excess of H_{2}.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

5. Tetraethyl lead, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(1)}$, is an "anti-knock" ingredient, which was added to some gasoline's. Tetraethyl lead burns according to the equation:

$$
2 \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(\mathrm{l})}+27 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+16 \mathrm{CO}_{2(\mathrm{~g})}+20 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a. What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP is consumed when 100.0 g of $\mathrm{PbO} \mathrm{O}_{(\mathrm{s})}$ are formed?
b. How many molecules of CO_{2} are formed when $1.00 \times 10^{-6} \mathrm{~g}$ of tetraethyl lead is burned? Assume an excess of O_{2}.
\qquad

$$
2 \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(\mathrm{l})}+27 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+16 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

c. What volume of $\mathrm{O}_{2(\mathrm{~g})}$ at STP, in milliliters, is required to react with 1.00×10^{15} molecules of tetraethyl lead?
6. How many grams of Silver chloride can be produced from 34.0 g of Silver nitrate? ASSume an excess of NaCl .

$$
\mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{NaCl}(\mathrm{aq}) \quad \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{NaNO}_{3(\mathrm{aq})}
$$

7. How many grams of Copper (I) sulphide could be produced from 19.8 g of Copper (I) chloride reacting with an excess of Hydrogen Sulphide gas?

$$
\mathrm{CuCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq})}
$$

8. Chlorine gas reacts with sodium metal to produce sodium chloride. What mass of Chlorine will be needed to react with 12.30 g of Sodium?
\qquad
9. Calcium phosphate and water react to form Calcium hydroxide and Phosphoric acid. How many grams of Calcium phosphate will be needed if 72.0 g of water react?
10. What mass of PbO is obtained by heating 100.0 g of PbCO_{3} according to the following equation:

$$
\mathrm{PbCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{PbO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

11. How much zinc is required to produce 10.00 g of ZnCl 2 according to the following equation:

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \quad \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

12. Pentane burns according to the reaction:

$$
\mathrm{C}_{5} \mathrm{H}_{12(\mathrm{l})}+8 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a. What volume in ml of $\mathrm{CO}_{2(\mathrm{~g})}$ at S.T.P is produced when 100.0 g of $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{I})$ is burned? (Assume an excess of O_{2}).
b. How many molecules of $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{I})$ would burn if only 50.0 g of $\mathrm{O}_{2}(\mathrm{~g})$ is available?
\qquad
13. The net reaction for photosynthesis is water and carbon dioxide combining to form oxygen gas and glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. How many grams of carbon dioxide must a plant take in through its leaves to make 60.0 g of glucose? (Balanced? ©...ASSume an excess of water)

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

14. Animals require glucose for energy which is released in a combustion reaction. Balanced?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \leadsto \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

a. What mass of O_{2} is required to burn 75.0 g of glucose?
b. What mass of water will be produced?
c. What volume, in ml's, of $\mathrm{CO}_{2(\mathrm{~g})}$ will be produced at S.T.P?
\qquad
15. How many litres of 0.100 M HCl would be required to react completely with 5.00 grams of calcium hydroxide?

$$
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
$$

For the following questions, please use this reaction:

$$
\mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

16. How many liters of 0.100 M HCl would be required to react completely with 5.00 grams of calcium hydroxide?

$$
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

17. How many grams of calcium hydroxide are needed to react with 69.50 ml of 0.350 M hydrochloric acid?

$$
\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

18. If 350.0 ml's of 0.250 M Calcium chloride were produced, what mass of Calcium hydroxide was required? (Assume an excess of HCl)

$$
\mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

