Name \qquad Block: \qquad Date: \qquad

Chemistry 12
 ACID \& BASE TITRATIONS

1. 13.45 mL of 0.200 M NaOH is required to titrate 25.0 mL of a solution which is known to have HCl . Calculate the original $[\mathrm{HCl}]$. Show all your steps.
2. 13.45 mL of 0.200 M HCl is required to titrate 25.0 mL of a solution which is known to have $\mathrm{Ba}(\mathrm{OH})_{2}$. Calculate the original $\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$. Show all your steps.
3. 13.45 mL of $0.200 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ is required to titrate 25.0 mL of a solution which is known to have HNO_{3}. Calculate the original $\left[\mathrm{HNO}_{3}\right]$. Show all your steps.
4. What volume of 0.100 M NaOH would be required to titrate 35.0 mL of a 0.231 M solution of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Show all your steps.
5. Consider the following 0.100 M solutions:
I. HF
II. HBr
III. $\mathrm{H}_{2} \mathrm{SO}_{4}$

The equivalence point is reached when 10.00 mL of 0.100 M NaOH has been added to 10.00 mL of solutions
A. II only
B. I and II only
C. II and III only
D. I, II and III
6. a) Write the balanced formula equation for the titration between sulphurous acid and potassium hydroxide.
b) Write the balanced net-ionic equation for the titration between sulphurous acid and potassium hydroxide. (1 mark)
7. Given the following data table:
Beaker Volume Contents
$1 \quad 10.0 \mathrm{~mL} \quad 0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
$2 \quad 15.0 \mathrm{~mL} \quad 0.2 \mathrm{M} \mathrm{NH}_{3}$
$3 \quad 20.0 \mathrm{~mL} \quad 0.05 \mathrm{M} \mathrm{KOH}$
$4 \quad 50.0 \mathrm{~mL} \quad 0.2 \mathrm{M} \mathrm{NaOH}$
a) Which beaker would require the greatest volume of 0.1 M HCl for complete neutralization?
b) What volume of 0.1 M HCl would be needed for the neutralization in (a)?
c) Which beaker would require the least volume of 0.1 M HCl for complete neutralization?
d) What volume of 0.1 M HCl would be needed for the neutralization in (c)?
8. Calculate the mass of NaOH which is required to neutralize 15.00 mL of $0.350 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
9. When a 0.1 M strong base titrates a 0.1 M weak monoprotic acid, it takes (less/more/the same)
\qquad volume of the base as it would to titrate a 0.1 M strong monoprotic acid.

