Name	Block:	Date:

Chemistry 12 **BRØNSTED-LOWRY ACIDS & BASES**

Write the formula for a <i>proton</i>				
Write the formula for a <i>hydrated proton</i>				
Write the formula for a <i>hydronium</i> ion				
Give the Arrhenius definition of an acid				
Give the Arrhenius definition of a base				
Give the <i>Brønsted-Lowry</i> definition of an <i>acid</i>				
Give the <i>Brønsted-Lowry</i> definition of a <i>base</i>				
What is an amphiprotic anion ?				
Give 4 examples of amphiprotic anions. (<i>Note – you may want to complete the next two pages first</i> (5)				
a) c)				
b) d)				

BRONSTED-LOWRY ACIDS AND BASES

Name _____

According to Bronsted-Lowry theory, an acid is a proton (H+) donor, and a base is a proton acceptor.

Example: $HCI + OH^- \rightarrow CI^- + H_2O$

The HCl acts as an acid, the OH- as a base. This reaction is reversible in that the $\rm H_2O$ can give back the proton to the Cl-.

Label the Bronsted-Lowry acids and bases in the following reactions and show the direction of proton transfer.

Example: $H_2O + CI^- \leftrightarrow OH^- + HCI$ Acid Base Base Acid

1.
$$H_2O + H_2O \Leftrightarrow H_3O^+ + OH^-$$

2.
$$H_2SO_4 + OH^- \leftrightarrow HSO_4^- + H_2O$$

3.
$$HSO_4^- + H_2O \Leftrightarrow SO_4^{-2} + H_3O^+$$

4.
$$OH^- + H_3O^+ \leftrightarrow H_2O + H_2O$$

5.
$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

CONJUGATE ACID-BASE PAIRS

In the exercise, Bronsted-Lowry Acids and Bases, it was shown that after an acid has given up its proton, it is capable of getting back that proton and acting as a base. Conjugate base is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Fill in the blanks in the table below.

Conjugate Pairs

	ACID	BASE	EQUATION
1.	H ₂ SO ₄	HSO₄-	$H_2SO_4 + H_2O \Rightarrow H_3O^+ + HSO_4^-$
2.	H ₃ PO ₄		
3.		F-	
4.		NO ₃ -	
5.	H₂PO₄⁻		
6.	H ₂ O		
7.		SO ₄ -2	
8.	HPO ₄ -2		
9.	NH₄ ⁺		
10.		H ₂ O	