Name	Block:	Date:
1 (dille	DIOUK.	Date.

	BRØNSTED-LOWRY ACIDS & BASES				
1.	Write the formula for a <i>proton</i>				
2.	Write the formula for a hydrated proton				
3.	Write the formula for a hydronium ion				
4.	Give the Arrhenius definition of an acid any substance which releases H+ 10ns in H20				
5.	Give the Arrhenius definition of a base any subtance which releases OH- 10ns in H20				
6.	Give the Brønsted-Lowry definition of an acid a Substance that Can donate a proton to another substance				
7.	Give the Brønsted-Lowry definition of a base a substance that				
8.	What is an amphiprotic anion? <u>Substances that can act</u> as either an acid or base				
9.	Give 4 examples of amphiprotic anions. (Note – you may want to complete the next two pages first (4))				
	a) H2 PO4 - c) H5O4 b) HPO42- d) HC5O4- + Others				

BRONSTED-LOWRY ACIDS AND BASES

According to Bronsted-Lowry theory, an acid is a proton (H+) donor, and a base is a proton acceptor.

Example: HCI + OH → CI + H₂O

The HCl acts as an acid, the OH- as a base. This reaction is reversible in that the $\rm H_2O$ can give back the proton to the Cl⁻.

Label the Bronsted-Lowry acids and bases in the following reactions and show the direction of proton transfer.

Example: H₂O + Cl + OH + HCl Acid Base Base Acid

1. $H_2O + H_2O \Leftrightarrow H_3O^+ + OH^-$ B A A B
2. $H_2SO_4 + OH \Leftrightarrow HSO_4 + H_2O$ $A B B A$
3. $HSO_4^2 + H_2O \Leftrightarrow SO_4^2 + H_3O^+$ A B B A
4. OH- + H ₃ O+ \Rightarrow H ₂ O + H ₂ O B A B
5. $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$ B A A B

CONJUGATE ACID-BASE PAIRS

Name	
2 4 4044 2 3 405	

in the exercise, Bronsted-Lowry Acids and Bases, it was shown that after an acid has given up its proton, it is capable of getting back that proton and acting as a base. Conjugate base is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Fill in the blanks in the table below.

Conjugate Pairs

	ACID	BASE	EQUATION
g	H ₂ SO ₄	HSO ₄ -	H ₂ SO ₄ ↔ H ₃ O+ HSO ₄ -
2.	H ₃ PO ₄	H2P04	H3P04 + H2O = H3O++H2P04
3.	HF	F·	HF + H20 = H30+ + F-
4.	HN03	NO ₃ -	HN03+ H20= H30+ +N03
5.	H₂PO₄⁻	HP04 ²⁻	H2PO4-+H2O=HPO42-+H3O+
6.	H ₂ O	OH-	H20 + H20 = H30+ + OH-
7.	H504 ⁻	SO ₄ -2	H504 + H20 = H30+ 5042
8.	HPO ₄ -2	PO43-	HPQ12-+ H20= H30++PO43-
9.	NH ₄ *	NH3	NH4+H20=H30++NH3
10.	H30+	H ₂ O	H30+ = H+ + H20