Chemistry 12		Unit 2 - Chemical Equilibrium
Name:	Block:	Date:

Chemistry 12

	to decide what effect a <i>change in total pressure</i> will have on an equilibrium with gases, what is the first thing you should do when given the balanced equation
	which way the following equilibrium systems will shift when the <i>total pressure</i> d .(NOTE: Some may have no shift)
a).	$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ Answer
b).	$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$ Answer
c).	$4NH_{3(g)} + 5O_{2(g)} \rightleftharpoons 4NO_{(g)} + 6H_2O_{(g)}$ Answer
Which w	ray will the following equilibrium shift if the <i>total pressure</i> on the system is
	why a flask filled with $NO_{2(g)}$ (dark brown) and $N_2O_{4(g)}$ (colourless) will get when heated. Use the equation: $N_2O_{4(g)} + heat \rightleftharpoons 2NO_{2(g)}$
_	
- -	
 State <i>Le</i> 	Chatelier's Principle.
_ _ State <i>Le</i> _ _	Chatelier's Principle.

6. *Hydrogen peroxide* is decomposed as follows:

$$H_2O_{2(l)} \rightleftharpoons H_{2(g)} + O_{2(g)} \quad \Delta H = +187 \, kJ$$

Predict the *direction of equilibrium shift* by each of the following imposed changes:

- a) *Increase* the [H₂] Answer _____
- b) *Decrease* the [O₂] Answer _____
- c) **Decrease** the **total pressure** Answer _____
- d) Increase the temperature..... Answer____
- e) Add MnO₂ as a *catalyst*...... Answer _____
- 7. Consider the following reaction at equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

a) Addition of more H₂ gas to the container will do what to the rate of the forward reaction?

Answer

b) If, for a while, the rate of the *forward* reaction is *greater than* the rate of the *reverse* reaction, what will happen to the [HI]?

Answer

c) As the [HI] is increased, what will happen to the rate of the reverse reaction?

Answer

d) When the rate of the *reverse* reaction once again becomes *equal* to the rate of the

forward reaction, a new______ has been reached.

e) Since the rate of the *forward* reaction was, for a while, greater than the rate of the *reverse* reaction, the new equilibrium will have a slightly higher concentration of

and a slightly lower concentration of _____ &

f) Sketch a graph of the relative concentrations of each species as the process outlined in **a-e** of this question (*on the last page*) is carried out.

8. Consider the following equilibrium and state which way (left or right) the equilibrium shifts when each of the changes below are made.

TIME →

Heat +
$$CH_{4(g)} + 2H_2S_{(g)} \rightleftharpoons CS_{2(g)} + 4H_{2(g)}$$

- a) CH₄ gas is added Answer _____
- b) CS₂ gas is removed...... Answer _____
- c) H₂ gas is added Answer _____
- d) The total volume of the container is decreased Answer _____
- e) The *temperature* is increased Answer
- f) The *total pressure* is decreased Answer
- g) Helium gas is added to increase the total pressure.... Answer
- 9. Using the following equilibrium, state what would happen to the equilibrium partial pressure of CH_3OH gas when each of the following changes are made:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} \qquad \Delta H = -75.2 \text{ kJ}$$

- a) CO gas is added to the container Answer _____
- b) The temperature is increased Answer _____
- c) The *total pressure* of the system is increased....... Answer____

$\frac{1}{2} \frac{1}{2} \frac{1}$	$CO_{(g)}$	$+2H_{2(g)}$	$\rightleftharpoons CH_3OH_{(g)}$	$\Delta H = -75.2 \ k.$
--	------------	--------------	-----------------------------------	-------------------------

- d) H₂ gas is removed from the system...... Answer _____
- e) A *catalyst* is added...... Answer _____
- f) The total volume of the container is increased....... Answer____
- 10. For the reaction:

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)} \quad \Delta H = -77 \text{ kJ}$$

state the **optimal pressure and temperature conditions** necessary for maximum production of NOCl.(*high or low?*)

- 1. ______ pressure 2 ______ temperature
- 11. For the reaction:

$$3H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{3(g)} + heat$$

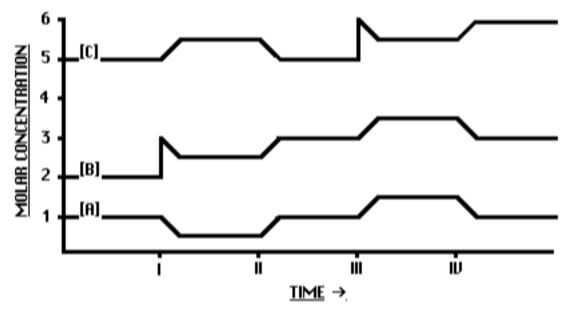
state the optimal conditions for a high yield of ammonia (NH₃). (high or low?)

- 12. Given the following equilibrium system, state which way the equilibrium will shift when the changes below are made:

$$2C_2H_{6(g)} + 7O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 6H_2O_{(g)} + heat$$

- a) The *volume* of the container is halved...... Answer _____
- b) The *temperature* is decreased Answer _____
- c) CO₂ is added to the container..... Answer _____
- d) The total pressure is increased Answer _____
- e) O₂ gas is removed from the system Answer _____
- f) Neon gas is added to increase the total pressure Answer _____
- h) A catalyst is added...... Answer _____
- 13. Using the equilibrium: $N_{2(g)} + O_{2(g)} + heat \rightleftharpoons 2NO_{(g)}$ Explain why nitric oxide (NO) does **not** generally form in the atmosphere but **is** formed in the internal combustion engine of an automobile or during a lightning storm.

14. Explain why a syringe containing NO₂ gas will first get *darker* and *then lighter* in colour when compressed. Use the equilibrium equation:


$$N_2O_{4(g)}$$
 + heat \rightleftharpoons $2NO_{2(g)}$ colourless brown

15. Explain why a flask containing NO₂ will get *lighter* in colour when put into *ice water*. Use the equation:

$$N_2O_{4(g)}$$
 + heat \rightleftharpoons $2NO_{2(g)}$ colourless brown

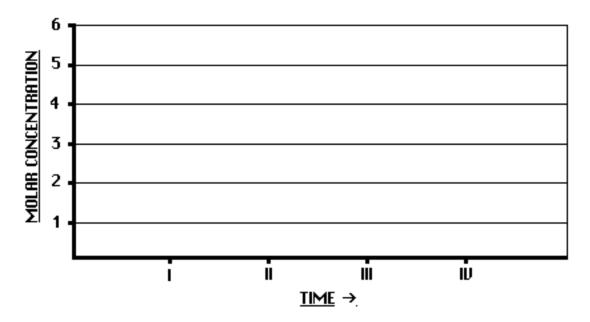
16. Given the following graph showing the concentrations of species A, B and C, state what changes in **temperature** or **concentration** are responsible for each of the shifts shown on the graph. The equilibrium equation is:

$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} \qquad \Delta H = -65 \text{ kJ}$$

- a) At time I,
- b) At time II,
- c) At time III,
- d) At time IV,

17. Given the equilibrium equation:

$$XY_{(g)}$$
 + heat \rightleftharpoons $X_{(g)}$ + $Y_{(g)}$


If initially, at equilibrium, the [XY] = 3.0 M, the [X] = 5.0 M and the [Y] = 6.0 M, draw a graph *similar to the one in question 16* showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The *temperature is increased*.

Time II - Some $\hat{X}(g)$ is *added* to the system

Time III - Some $Y_{(g)}$ is *removed* from the system

Time IV - The temperature is decreased.

18. For each of the following reactions, predict whether the *entropy* increases or decreases.

c)
$$MgCO_{3(s)} + 2H_3O^{+}_{(aq)} \rightleftharpoons Mg^{2+}_{(aq)} + 3H_2O_{(l)} + CO_{2(g)}$$

Answer _____

d)
$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightleftharpoons AgCl_{(s)}$$
...... Answer

e)
$$2C_2H_{2(g)} + 5O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 2H_2O_{(g)}$$
..... Answer

19. On the basis of **enthalpy** and **entropy**, predict whether each of the following reactions would be *spontaneous as written* or not at room temperature.

a) $N_{2(g)} + 2O_{2(g)} \rightleftharpoons 2NO_{2(g)} \Delta H = +67.7$	a)	$N_{2(g)}$	+	$2O_{2(g)}$	\rightleftharpoons	$2NO_{2(g)}$	$\Delta H = +67.7 \text{l}$
--	----	------------	---	-------------	----------------------	--------------	------------------------------

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____

b)
$$2C_{(s)} + O_{2(g)} \rightleftharpoons 2CO_{(g)} + 110 \text{ kJ}$$

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____

c)
$$2Pb(NO_3)_{2(s)} + 597 \text{ kJ} \rightleftharpoons 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$$

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____