Name		Block:	Date:		
	STRE	Chemistry 12 NGTHS OF ACIDS	& BASES	(KEY)	
				140+	
1.	What is the strongest acid t			730	
2.	What is the strongest base that can exist in aqueous solution?				
3.	What would have the higher	(H_3O^+) in water, 10.0 (OM)) M HClO ₄ or 1	.0 M HClO ₄	
4.	What would have the higher	$er[H_3O^+]$ in water, 10.0) M HClO ₄ or 1	0.0 M HNO ₂ ?	
		OOM HC	104		
5.	What would have the higher	$er [H_3O^+]$ in water, 1.0	M HIO ₃ or 1.0	$M H_2SO_3$?	
		LOM HIL	$\mathcal{O}_{\mathbf{Z}}$		
6.	What would have the higher	$er [H_3O^+]$ in water, 1.0	M NH ₄ ⁺ or 1.0	M HF?	
		LOM HF	-	_	
7.	Which is the stronger acid,	HSO_3^- or $HC_2O_4^-$?	HC:	204-	
8.	Which is the stronger acid,	HSO ₃ or HSO ₄ ?	H50	04'-	
9.	Which is the stronger acid,	HPO_4^{2-} or HSO_3^{-} ?	450	03 -	
10.	. Which is the stronger base,	HPO ₄ ² - or HSO ₃ ⁻ ?	400	42-	
11.	. Which is the stronger base,	HSO ₃ or HSO ₄ ?	HE	503 -	
12.	. Which is the stronger base,	HCO ₃ or HCOO ?	HC	03-	
13.	. Classify each of the follow	ing as: a strong acid (S	A), weak acid ((WA), strong base (SB)	
	weak base (WB) or a spect		C.I.	. 5	
	a) F			<u> </u>	
	b) HIO ₃	$-\overset{\text{WA}}{=}$ $-\overset{\text{g}}{=}$	NH_3	<u></u>	
	c) NO_3	h)	O^{2-}	06	
	d) HClO ₄	SA i)	CH ₃ COOH	-WA	
	e) $C_2O_4^{2-}$		ClO_4		
14.	. If 0.10 M HSO_3^- is mixed v	with $0.10 \text{ M} \text{ HC}_2\text{O}_4$, w	hich species wi	ill donate a proton?	
15.	. If $0.10 \text{ M} + \text{HSO}_4^{-1}$ is mixed v	with $0.10 \text{ M HC}_6\text{H}_5\text{O}_7^2$, which species	s will <i>donate</i> a proton?	
16.	. If 0.10 M HSO_3^- is mixed v	with $0.10 \text{ M} \text{ HC}_6\text{H}_5\text{O}_7^2$	which species	s will <i>donate</i> a proton?	

17.	If $0.10 \text{ M HCO}_3^{-1}$ is mixed with $0.10 \text{ M HC}_2\text{O}_4^{-1}$, which species will <i>accept</i> a proton?	
18.	If 0.10 M HS^- is mixed with 0.10 M NO_2^- , which species will <i>accept</i> a proton?	
19.]	If 0.10 M H ₂ SO ₄ is mixed with 0.10 M HPO ₄ ² , which species will <i>accept</i> a proton?	
	Write the balanced equation which describes the equilibrium present when $0.1 \text{ M H}_2\text{SO}_3$ is mixed with 0.1 M NO_2^- .	
; 1	a) H2SO4 + NO2 = HNO2 + HSO3 b) For this reaction, equilibrium tends to favour the (reactants/products)? products	
	c) For this reaction, equinorium tends to lavour the (reactants/products)?	
21.	Write the balanced equation which describes the equilibrium present when 0.1 M HSO ₃	
1	is mixed with 0.1 M HC_2O_4 a) $\underline{HSO_3}$ + $\underline{HC_2O_4}$ + $$	
i i	Write the balanced equation which describes the equilibrium present when 0.1 M HPO ₄ ² is mixed with 0.1 M H ₂ C ₆ H ₅ O ₇ . (a) $\frac{11004^{2}}{11004^{2}} + \frac{11004^{2}}{11004^{2}} + \frac{11004^{2}}{1$	O-,
8	The Keq for the reaction: $HA_2B + CD^- \rightleftharpoons HCD + A_2B^-$ is 0.0020 a) Which is the stronger conjugate acid in the above equilibrium? b) Which is the stronger conjugate base in the above equilibrium?	
á	The Keq for the reaction: $H_2X + YZ^- \rightleftharpoons HYZ + HX^-$ is 3.4×10^5 a) Which is the stronger conjugate acid in the above equilibrium? b) Which is the stronger conjugate base in the above equilibrium?	