KEY
 SpONTANEOUS,
 NON-SPONTANEOUS 0R
 EQUILIBRIUM?

15. In each of the following, decide
i) which side is favoured by the tendency to minimum enthalpy; that is, which side of the reaction has the lower energy.
ii) which side is favoured by the tendency to maximum entropy; that is, which side of the reaction has the more random species.
iii) whether the reaction will be

- a spontaneous reaction which goes to completion ("GOES 100\%"), or
- a non-spontaneous reaction in which NO products are formed ("WON'T OCCUR"), or
- a spontaneous equilibrium reaction in which the tendency to minimum enthalpy will be balanced by an opposing tendency to maximum entropy ("EQUILIBRIUM").

Note : in parts (a) to (d) all the species are GASES

> Reaction proceeds

Reaction proceeds
c)

Reaction proceeds
d)

Reaction proceeds
e) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+150 \mathrm{~kJ}$
f) $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=311 \mathrm{~kJ}$-enth-R entro-p $\rightarrow E Q$
g) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \Delta \mathrm{H}=183 \mathrm{~kJ}$
h) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g}) ; \Delta \mathrm{H}=-221 \mathrm{~kJ}$

