m

20

PUR (

- (d) Maximum entropy favours REACTANTS (gas is the most random phase). Since the reaction DOES NOT OCCUR, then the tendency to minimum enthalpy must also favour REACTANTS ( $\Delta H > 0$ ).
- (e) Maximum entropy favours PRODUCTS:  $\underline{1} \text{ N}_2\text{O}_4(g) \longrightarrow \underline{2} \text{ NO}_2(g)$ . Since equilibrium occurs ("some of it decomposes") one tendency must oppose the tendency to products by maximum entropy, so that minimum enthalpy favours REACTANTS ( $\Delta H > 0$ ).
- (f) Maximum entropy favours REACTANTS: smoke +  $CO_2(g)$  +  $H_2O(g)$   $\longrightarrow$  solid wood +  $O_2(g)$ . Since the reaction WON'T GO, the tendency to minimum enthalpy favours REACTANTS ( $\Delta H > 0$ ).
- 17. (a) shift to reactant side
- (b) shift to product side
- (c) shift to reactant side
- (d) no shift

- 18. (a) shift to product side
- (b) shift to reactant side
- (c) shift to reactant side

- 19. (a) shift to reactant side
- (b) shift to product side
- (c) no shift

- 20. (a) shift to reactant side(b) shift to reactant side
- (c) no shift (same numbers of gas particles on both sides)

- 21. (a) DEC
- (b) INC
- (c) INC
- (d) NC

- 22. (a) DEC
- (b) INC
- (c) NC, after the initial increase in all concentrations

- 23. (a) INC
- (b) NC
- (c) INC





(b)



(c)



(d)



25. (a)



(b)















- 27. (a) temperature is decreased
- (b) some PCI<sub>5</sub> is injected
- 28. (a) pressure is decreased by increasing the volume
- (b) temperature is increased

- 29. (a) high pressure
  - (b) low temperature
  - (c) high temperature
  - (d) High temperature is needed to get a fast reaction (get to equilibrium quickly) but at high temperature the reaction gives little products at equilibrium. Choose an intermediate temperature: a somewhat slower reaction occurs but it gives an acceptable amount of product in return.
  - (e) add a catalyst
- 30. (a) high temperature
  - (b) low pressure. Let the  $CO_2(g)$  produced escape to the atmosphere.
  - (c) high temperature (which agrees with the requirements for a large yield of CaO)