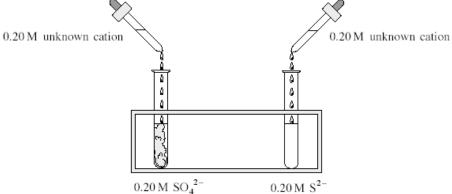

Name	Block:	Date:
Chemistry 12 QUALITATIVE ANALYSIS		
1) Identify a <i>cation</i> that could be separate the ions by precipitating		nixture containing SO_4^{2-} and S^{2-} to
2) Identify a <i>solution</i> that could precipitation.	d be used to separate the o	cations Al3+ and Ba2+ from each other b
3) Identify a <i>solution</i> that could by precipitation.	d be used to separate the a	anions SO_4^{2-} and CO_3^{2-} from each other
	der to precipitate only on	d 0.2 M PO ₄ ³⁻ ions. An equal volume one of these anions. Identify a cation that
5) Devise a scheme to individu containing Mg ²⁺ , Sr ²⁺ and Pb ²⁺ . ionic equations and the method	As a part of your scheme	ove the cations from a solution e, provide the compounds added, the ne

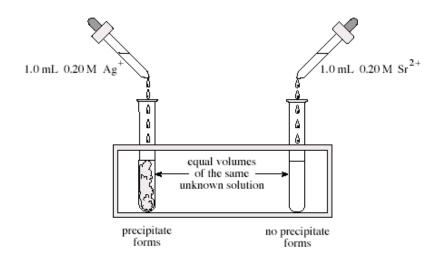

6) Devise a scheme to individually precipitate and remove the cations from a solution containing OH^- , S^{2-} and Br^- . As a part of your scheme, provide the compounds added, the net ionic equations and the method of removal.

7) A solution contains the cations Pb²⁺, Ba²⁺ and Fe²⁺. Devise a scheme to individually precipitate two of the cations and separate them from the solution. As part of your answer, provide the compounds added, the net ionic equations and the method of removal.

8) An experiment is conducted to identify an unknown cation that is present in each of four beakers.

- 9) A reagent that may be used to separate Cl⁻ from S²⁻ by precipitation is:
 - A. KNO₃
- B. $Pb(NO_3)_2$
- C. AgNO₃
- D. $Al(NO_3)_3$
- 10) A solution contains both Ag^+ and Mg^{2+} ions. During selective precipitation, these ions are removed one at a time by adding:
 - A. OH followed by S²-
- C. SO_4^{2-} followed by Cl^{-}
- B. I followed by OH
- D. NO₃ followed by PO₄³
- 11) A precipitate forms when a 0.20 M solution containing an unknown cation is added to SO_4^{2-} , but not when an equal volume is added to S^{2-} . What is the possible identity of the unknown cation?

12) A solution contains 0.2 M Zn²⁺ and 0.2 M Sr²⁺. An equal volume of a second solution was added, forming a precipitate with Sr²⁺ but not with Zn²⁺. What is present in the second solution?


13) A solution containing an unknown cation was added to three solutions and the following observations were recorded:

What is the identity of the unknown cation?)

SOLUTION	OBSERVATION	
NaI	no precipitate	
Na ₂ SO ₄	precipitate	
NaOH	no precipitate	

14) Consider the following experiment:

What *anion* could the unknown solution contain?

