
Chemistry 12 – Unit 5			Electrochemistry
Name	Block:	Date:	

Chemistry 12 **STANDARD REDUCTION POTENTIALS**

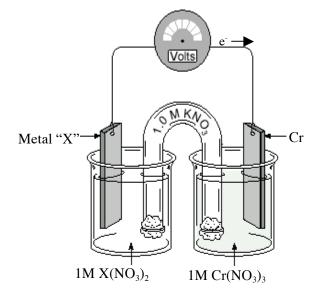
1.	A cell is constructed using Nickel metal and 1 M nickel (II) nitrate along with Fe metal and 1 M Iron (II) nitrate.				
	a) Write the equation for the half-rxn at the cathode (with the E°)				
	b) Write the equation for the half-rxn at the anode (with the E°)				
	c) Write the balanced equation for the overall reaction (with the E°)				
	d) What is the initial cell voltage?V				
2.	A cell is constructed using aluminum metal, $1 \text{ M Al(NO}_3)_3$ and lead metal with 1 M Write the overall redox reaction and find the initial cell voltage.	$Pb(NO_3)_2$.			
	Cathode:				
	Anode:				
	Overall redox reaction:	_			
	Initial cell voltage:Volts.				
3.	A student has 3 metals: Ag, Zn and Cu; three solutions: AgNO ₃ , Zn(NO ₃) ₂ , and Cu(She also has a salt bridge containing KNO ₃ (aq) wires and a voltmeter. a) Which combination of 2 metals and 2 solutions should she choose to get the possible voltage?				
	Metal:Solution:				
	Metal:Solution:				

b) Draw a diagram of the cell labeling metals, solutions, salt bridge, wires, and voltmeter.

- c) Write an equation for the half-rxn at the **cathode**. (with E°)
- d) Write an equation for the half-rxn at the **anode** (with E°)
- e) Write a balanced equation for the **overall redox reaction** in the cell (with E°)
- f) The initial voltage of this cell is _____Volts.
- g) In this cell, electrons are flowing toward which metal?_____ In the _____.
- h) Positive ions are moving toward the _____ solution in the _____.
- i) Nitrate ions migrate toward the ______ solution in the _____.
- j) _____ metal is gaining mass ____ As the cell operates.

The student now wants to find the combination of metals and solutions that will give the **lowest** voltage.

k) Which metals and solution should she use?


Metal _____ Solution ____

Metal _____ Solution ____

- l) Find the **overall redox equation** for this cell.
- m) Find the **initial cell voltage** of this cell _____Volts.

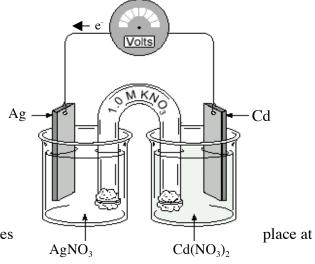
4. Consider the following cell:

The voltage on the voltmeter is 0.45 Volts.

a)	Write the eq	uation for	the half-read	tion taking p	lace at the anode.	Include the E°.
,	, , , , , , , , , , , , , , , , , , , ,					1110107070 0110 23

 $\underline{\hspace{1cm}} E^{\circ} : \underline{\hspace{1cm}} V$

b) Write the equation for the half-reaction taking place at the cathode.


_____V

- c) Write the balanced equation for the redox reaction taking place as this cell operates. Include the E° . _____V
- d) Determine the reduction potential of the ion X^{2+} . E° : ______V
- e) Toward which beaker $(X(NO_3)_2)$ or $(Cr(NO_3)_3)$ do NO_3^- ions migrate?

f) Name the actual metal "X"

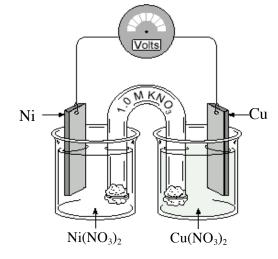
5. Consider the following cell:

The initial cell voltage is <u>1.20 Volts</u>

a) Write the equation for the half-reaction which takes

the cathode. Include the E°

______E°= ______V


b) Write the equation for the half-reaction taking place at the anode:

 $E^{\circ} = V$

c) Write the balanced equation for the overall redox reaction taking place. Include the E°.

 E^{o} = _____V

- d) Find the oxidation potential for Cd: E° = _____V
- e) Find the reduction potential for Cd²⁺: E°= _____V
- f) Which electrode gains mass as the cell operates? _____
- g) Toward which beaker (AgNO₃ or Cd(NO₃)₂) do K⁺ ions move? _____
- h) The silver electrode and $AgNO_3$ solution is replaced by Zn metal and $Zn(NO_3)_2$ solution. What is the cell voltage now? ______Which metal now is the cathode? _____
- 6. Consider the following electrochemical cell:

a) Write the equation for the half-reaction taking place at the nickel electrode. Include the E°

______E°= _____V

b) Write the equation for the half-reaction taking place at the Cu electrode. Include the E°.

 E°

c) Write the balanced equation for the redox reaction taking place.

 E°

d) What is the initial cell voltage? _____V

e) Show the direction of electron flow on the diagram above with an arrow with an "e" written above it.

f) Show the direction of flow of cations in the salt bridge using an arrow with "Cations" written above it.

- 7. A cell is constructed using $Cr/Cr(NO_3)_3$ and $Fe/Fe(NO_3)_2$ with both solutions at 1.0 M and the temperature at 25 °C.
 - a) Determine the **initial cell voltage**.

	Answer:V				
b)	What is the equilibrium cell voltage?				
	Answer:V				
c)	Write the balanced equation for the overall reaction taking place. Write the word "energy"				
	on the right side and make the arrow double.				
d)	Using the equation in (c), predict what will happen to the cell voltage when the				
	following changes are made:				
	i) More $Cr(NO_3)_3$ is added to the beaker to increase the $[Cr^{3+}]$				
	Cell voltagecreases				
	ii) The [Fe ²⁺] ions is increased .				
	Cell voltagecreases				
	iii) A solution is added to precipitate the Fe ²⁺ ions				
	The [Fe ²⁺] willcrease & cell voltage willcrease				
	iv) Cr3+ ions are removed by precipitation. Voltagecreases				
	v) The surface area of the Fe electrode is increased				
	Voltage				
	vi) The salt bridge is removed. Voltage				