Chemistry	12 –	Unit 3
-----------	------	--------

eneman y 12 enme			2	•••••••
Name	Block:	Date:		
	Chemistry 12 ELECTROLYS	IS		
1. Consider the Electrolysis of Molte	en Potassium Iodid	e (KI _(l))		
KI →				
Cathode Half-Reaction:				
		E° =	V	
Anode Half-Reaction:				
		E ^o =	V	
Overall Redox Reaction:				
		E° =	V	

			T 7
Product at Cathode	Product at Anode	Min. Voltage Needed	V

Sketch this cell, labeling everything:

2. For the electrolysis of aqueous $CuCl_2$ using platinum (inert) electrodes. Find:

$CuCl_2 \rightarrow$		
The half-reaction at the Cathode:		E_o =
The half-reaction at the Anode:		$E_{0} =$
The overall redox reaction:		E_o =
Product(s) at the Cathode:	Product(s) at the Anode	
The minimum voltage required:	V	
Chemistry 12		Page 1 of 2 pages

Chemistry 12 – Unit 3

3. For the electrolysis of $Na_2SO_{4(aq)}$ using carbon (inert) electrodes. Find:

The half-reaction at the Cathode:	E° =	
The half-reaction at the Anode:	E°=	
The overall redox reaction:	E =	
Product(s) at the Cathode:		
The minimum voltage required:	V	
4. For the electrolysis of $CuSO_{4(aq)}$ using inert electrodes. Find:		
The half-reaction at the Cathode:	E° =	
The half-reaction at the Anode:	E° =	
The overall redox reaction:	E =	
Product(s) at the Cathode:	Product(s) at the Anode	
The minimum voltage required:	V	

5. Design a cell to electroplate an iron ring with copper. Include in the diagram: the ions present in the solution, the direction of ion flow, the substance used for the anode and the cathode and the direction of electron flow when the cell is connected to a DC power source.